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Abstract. We present the first machine-checked formalization of Jaffe
and Ehrenfeucht, Parikh and Rozenberg’s (EPR) pumping lemmas in the
Coq proof assistant. We formulate regularity in terms of finite derivatives,
and prove that both Jaffe’s pumping property and EPR’s block pumping
property precisely characterize regularity. We illuminate EPR’s classical
proof that the block cancellation property implies regularity, and discover
that—as best we can tell—their proof relies on the Axiom of Choice. We
provide a new proof which eliminates the use of Choice. We explicitly
construct a function which computes block cancelable languages from
well-formed short languages.
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1 Overview

Pumping properties of formal languages have a rich history. Rabin and Scott pro-
vided a pumping lemma that displays properties of regular languages; Bar-Hilel,
Perles, and Shamir did the same for context-free languages [17, 24]. Pumping lem-
mas describe how words belonging to the relevant language L can be “pumped”,
e.g. if L is regular then a word u ∈ L can be split into parts xyz (vwxyz in the
context-free case) such that for all n ∈ N, xynz ∈ L (respectively vwnxynz ∈ L).
Because pumping lemmas are often stated as necessary conditions of a language
being regular or context-free, they are often used in modus tollens form to show
that certain languages are not regular or context-free because they do not satisfy
the pumping property. Pumping lemmas are also used to prove other properties
of regular or context-free languages, e.g. that every context-free language over
the unary alphabet {0} is regular and that every automatic function increases
the length of its input by at most a constant.

The converse question of whether pumping properties can also serve as suf-
ficient conditions for a language to be regular or context-free is less straightfor-
ward. Sommerhalder [29] showed that even a more restrictive “matching” form
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of Rabin-Scott’s pumping lemma—that both a language and its complement
satisfy the pumping property—fails to precisely characterize regular languages
because there are non-regular languages that satisfy it. Jaffe [18] was the first to
provide a pumping lemma that precisely characterizes regularity, i.e. that gives
both a necessary and a sufficient condition for regularity.

1.1 Jaffe’s Pumping Lemma

Theorem 1 (Jaffe). A language L is regular iff there is a constant k s.t.

∀x ∈ Σ∗. |x| = k ⇒ ∃u, v, w ∈ Σ∗.
x = uvw ∧ v 6= ε ∧ ∀h ∈ N, z ∈ Σ∗. (uvwz ∈ L ⇔ uvhwz ∈ L)

Jaffe’s pumping lemma is a reformulation of the Myhill-Nerode theorem [23].
The pumping constant k in Jaffe’s pumping lemma refers to the length of word
prefixes, equivalently the length of the language’s derivative labels.

Definition 1 (Derivative). The derivative of a language L with respect to a
word x ∈ Σ∗, written Lx, is another language that accepts words y iff L accepts
xy, i.e. xy ∈ L⇔ y ∈ Lx.

Theorem 2 (Myhill-Nerode). A language L is regular iff it has a finite num-
ber of derivatives.

1.2 The Block Pumping Lemma

Ehrenfeucht, Parikh and Rozenberg [14] provided a pumping property that gives
a more sophisticated characterization of the regular languages.

Theorem 3 (EPR). A language L is regular iff there is a constant k s.t. for
any splitting of a word x into k + 2 blocks, i.e. x = w, u1, · · · , uk, w′, one can
find a an interval ui · · ·uj of blocks that can be pumped any number h of times:

∀x,w, u1, · · · , uk, w′ ∈ Σ∗. x = wu1 · · ·ukw′ ⇒
∃i, j ∈ N. 1 ≤ i < j ≤ k ∧ ∀h ∈ N,
wu1 · · ·ui+1 · · ·uj · · ·ukw′ ∈ L ⇔ w · · · (ui+1 · · ·uj)h · · ·ukw′ ∈ L

We call languages that satisfy EPR’s “block pumping” property “block pumpable
languages”, and we write “L is block pumpable with k” to specify the block
pumping constant. Furthermore, one can postulate that u1, · · · , uk are non-
empty without changing the notion of block pumpable.

An advantage of block pumping over Rabin-Scott pumping is that it allows
one to directly obtain block pumping constants for combined languages such as
L ∩H, L ∪H and L ·H from the constants for L and H, as we will show in §3.
Rabin-Scott pumping does not allow this: e.g. regular languages L = {0k1n2m :
k = 1⇒ (n = m mod h)} and H = {0} ·{1}∗ · {2}∗ both have pumping constant
2, but L ∩ H requires pumping constant h + 1, which is independent of the
pumping constants of L and H.

To compare EPR’s pumping property with Rabin-Scott’s, Chak et al. [4]
investigated languages that satisfy the block pumping property with the ⇔ re-
stricted to the ⇒ direction only:
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Definition 2 (One-sided block pumpable language). A language L is one-
sided block pumpable iff there is a constant k s.t.

∀x ∈ Σ∗. x ∈ L ⇒ ∀w, u1 · · ·uk, w′ ∈ Σ∗. x = wu1 · · ·ukw′ ⇒
∃i, j ∈ N. 1 ≤ i < j ≤ k ∧ ∀h ∈ N, w · · · (ui+1 · · ·uj)h · · ·ukw′ ∈ L

Chak et al. [4] showed that one-sided block pumpable languages not only need
not be regular, but need not even be computable! Accordingly, these languages
cannot be reasoned about in the same automata-theoretic way as other languages
in the Chomsky hierarchy. Instead, proofs about one-sided block pumpable lan-
guages have a distinctly combinatorial flavor, relying critically on Ramsey theory.

1.3 Contributions

We present the first machine-checked proofs of the pumping lemmas of Jaffe and
Ehrenfeucht, Parikh and Rozenberg in the Coq proof assistant. Jaffe’s pumping
lemma is straightforward to mechanize, but we present it nonetheless as a way
to introduce the novelties of our setup. In particular, we use Myhill-Nerode to
define the regularity of a language as having finitely many derivatives. We then
present machine-checked proofs from block pumpable language theory that, to
the best of our knowledge, are the first of formal language classes orthogonal
to the Chomsky hierarchy. We introduce relevant definitions by presenting a
mechanization of the closure properties of one-sided block pumpable languages:
they are closed under intersection, union and concatenation [4, Thm 15].

We then proceed with EPR’s more complex pumping lemma. This complexity
is in part due to some omissions concerning the concept of “finiteness”. We fill
in the gaps of their proof and discover that it appears to require the Axiom of
Choice to construct the inverse to a partial injective function.

Although not diehard constructivists, we find the Axiom of Choice a bit
objectionable. One well-known consequence is the Banach-Tarski paradox [2]:

Given a solid 3-D ball, one can decompose (“cut”) it into five disjoint
subsets (“pieces”), which can be reassembled using rigid motions (move-
ments and rotations) to yield two identical copies of the original ball.

Coq offers a variety of flavors of the Axiom of Choice, but their use leads to the
unfortunate (full or partial) collapse of the distinction between the set of math-
ematically true facts (Prop) and computationally decidable facts (Type) [3].

Accordingly, we present a new proof of EPR’s pumping lemma that eliminates
the Axiom of Choice by explicitly constructing the inverse function in question.
This inverse function can compute block cancelable languages from well-formed
input languages. The rest of this paper is organized as follows:

§2 We present our basic setup and prove Jaffe’s pumping lemma.
§3 We define block pumpable languages and prove closure properties.
§4 We mechanize the original proof of EPR’s pumping lemma. In the process

we clarify several areas of the proof, in particular its treatment of finiteness.
We show how EPR’s proof uses the Axiom of Choice.



4 A. Hobor, E. Li, F. Stephan

§5 We present our construction of an explicit inverse function and prove that
it can enable a new choice-free proof of EPR’s pumping lemma.

§6 We discuss related work before concluding in §7.

Along the way, we highlight aspects of our formalization which leverage features
of Coq’s type theory and/or contribute broadly applicable definitions and proofs
for which we could not find existing alternatives. The present work includes
results from the Capstone project of Li [21]. Our proofs are entirely machine-
checked in Coq and available at

https://github.com/atufchoice/blockpump

2 Regularity and Jaffe’s pumping lemma

Here we present the first mechanization of Jaffe’s pumping lemma, and with it
the basics of our formal setup. We begin with the axioms we add to CiC:

1. Functional extensionality:
(
∀x. f(x) = g(x)

)
⇒ (f = g)

2. Propositional extensionality: (P ⇔ Q)⇒ (P = Q)

3. Law of excluded middle: P ∨ ¬P
4. Functional choice: (∀a. ∃b. aRb)⇒

(
∃f. ∀a. aR(f(a))

)
Specifically: Jaffe (§2), EPR’s original proof (§4), and our new EPR proof (§5) use
functional and propositional extensionalities to prove language equivalence and
(via proof irrelevance) equality on dependent types. Proofs about block pumping,
i.e. closure properties for block pumpable languages (§3), EPR’s original proof
(§4) and our new Choice-free proof (§5) use the law of excluded middle due to the
fact that block pumpable languages are not Turing-decidable, and as a result,
we cannot check language membership computationally. Lastly, EPR’s original
proof (§4) uses functional choice.

We next present the basic mathematical definitions of alphabets, words, and
languages. We use Σ to refer to a finite alphabet, and σ to refer to symbols in
the alphabet. For simplicity in Coq, we use a three-letter alphabet (type T):

Inductive T : Type := aa | bb | cc.

We use variables x, y, z, w, v to denote words; |w| to denote the length of w; and
the symbol ε to denote the empty word. In Coq, words are just lists of letters:

Definition word := list T.

We use L, H to denote languages, i.e. sets of words:

Definition language : Type := word -> Prop.

We use functional and propositional extensionality to prove language equality:

Lemma language_equality : forall (l1 l2: language),
l1 = l2 <-> forall (w: word), l1 w <-> l2 w.
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Instead of using the standard representations of regular languages, i.e. finite
automata or regular expressions, we use Myhill-Nerode’s Theorem definition-
ally to represent regular languages as languages with finitely many derivatives.
We write Lx to denote the derivative of a language with respect to a word x
(sometimes Lσ with a single alphabet symbol), i.e.:

Definition derivative_of (L: language) (x: word) : language :=
fun w => L (x ++ w).

We say that Lx is a derivative of L when there exists a derivative label x such
that for all words w, Lx accepts w iff L accepts xw.

Definition is_deriv (L L_x: language) : Prop :=
exists (x: word), forall (w: word), L_x w <-> L (x ++ w).

We leverage Coq’s inductively defined lists to express the finiteness of a property
in terms of the existence of a list of elements satisfying that property:

Definition is_finite {X: Type} (P: X->Prop) : Prop :=
exists (L : list X), forall (x: X), In x L <-> P x.

A language L is regular iff it has finitely many derivatives:

Definition regular (L: language) : Prop :=
is_finite (is_deriv L).

We define regularity in this way because 1) Coq formalizations of regular ex-
pressions, finite automata and their equivalence already exist [12, 13, 15, 9]; and
2) Jaffe’s and EPR’s proofs critically rely on the exact notion of finiteness cap-
tured in our definition. Sometimes, for proof engineering purposes we use a
dependently-typed notion of finiteness as follows:

Definition is_finite_dep {X: Type} (P: X->Prop) :=
exists (L: list {x | P x}), forall (dep_x : {x | P x}), In dep_x L.

The following equivalence lets us use one or the other as locally convenient.

Lemma is_finite_equiv : forall {X: Type} (P: X->Prop),
is_finite_dep P <-> is_finite P.

2.1 Jaffe’s Pumping Lemma

Jaffe provides the following necessary and sufficient condition for regularity. The
napp function performs word concatenation: napp h v is equivalent to vh, or
v concatenated to itself h times.

Definition jaffe_pumpable_with (k: nat) (L: language) :=
forall (y: word), length y = k ->
exists (u v w: word),
y = u ++ v ++ w /\ v <> [] /\
forall (h: nat) (z: word),
L (u ++ napp h v ++ w ++ z) <-> L (y ++ z).

Jaffe’s pumping lemma amounts to proving two theorems, the first of which is:
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Theorem reg_to_jaffe : forall (L: language),
regular L -> exists (k: nat), jaffe_pumpable_with k L.

From regularity we have a finite list of derivatives LD, from which we obtain the
pumping constant |LD|+ 1. Given y, we construct a list of derivatives of length
|LD|+ 1, which by the pigeonhole principle must contain a repeated derivative.
We then split y based on the two prefixes of the repeated derivative language
such that they correspond to u and u++v respectively.

The second theorem is the converse:

Theorem jaffe_to_reg : forall (k: nat) (L: language),
jaffe_pumpable_with k L -> regular L.

The following helper lemma is required to prove the converse direction, and
captures the central intuition of Jaffe’s pumping lemma: for any Jaffe-pumpable
with k language, every derivative is equivalent to some derivative with label
length shorter than k. This lemma is proven via strong induction on |x|.
Lemma jaffe_helper : forall (k: nat) (L: language),
jaffe_pumpable_with k L -> forall x, exists v,
length v <= k /\ derivative_of L x = derivative_of L v.

We now prove that Jaffe’s pumping condition implies regularity, i.e. that we
can construct a list of finitely many derivative languages for L. The list LD we
construct is the list of derivatives labeled by all words up to length k, where k is
Jaffe’s pumping constant. Proving that every language in LD is a derivative of L
is direct by definition. Proving that every derivative L_x of L is in LD requires
jaffe_helper and case analysis on the derivative label’s length, i.e. |x|. When
|x| ≤ k, L_x is in LD by construction; when |x| > k, by jaffe_helper it is
equivalent to some derivative whose label is shorter than or equal to k, which is
in LD by construction.

3 Block pumpable languages and their closure properties

In this section we define the block pumping and block cancellation properties,
and prove that one-sided block pumpable languages are closed under union,
intersection, and concatenation.

We use i, j to denote natural numbers and bp1, bp2 to denote breakpoints,
i.e. indices into a word w. We define word parts in terms of indices of type nat
rather than subwords of type list to allow Coq’s omega tactic to automatically
discharge associated proof goals. Pumping the empty word leaves it unchanged,
so we can assume |w| ≥ 1 and at least two possible breakpoints (0 and |w|). We
use k to denote block pumping or cancellation constants. Therefore, k is at least
2, breakpoint sets are lists of k increasing, within-bounds indices into a word,
and breakpoints are members of such lists. We leverage Coq’s dependent types
to track these technicalities as follows:

Definition block_pumping_constant := {p: nat | p >= 2}.
Definition breakpoint_set (k: block_pumping_constant) (w: word)
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:= {bl: list nat | length bl = k
/\ increasing bl
/\ last bl d <= length w}.

Definition breakpoint {k: block_pumping_constant} {w: word}
(bl: breakpoint_set k w) := {i: nat | In i bl}.

Recall from (§1, Theorem 3) EPR’s block pumping property, i.e. in Coq:

Definition block_pumpable_matching_with (k: block_pumping_constant)
(L: language) :=

forall (w: word) (bl: breakpoint_set k w),
exists (i j: breakpoint bl), i < j /\
forall (m: nat),
L w <->
L (firstn i w++napp m (pumpable_block i j w)++skipn j w).

Here firstn, napp, pumpable_block, and skipn build the pumped word.
EPR [14] also established a variant of the block pumping property called the
block cancellation property: rather than repeating the word, we omit it. The
last two lines of block_pumpable_matching_with are replaced with:

L w <-> L (firstn i w++skipn j w).

While the one-sided block cancellation property is weaker than its pump-
ing counterpart, the (two-sided) block cancellation and pumping properties are
equivalent. Indeed, the block cancellation property plays a critical role in both
EPR’s theorem in §4, and the construction of our new Choice-free proof in §5.

3.1 Ramsey theory

Proofs about block pumpable languages use Ramsey’s theorem [28], a founda-
tional result in combinatorics. Ramsey’s theorem is typically stated on graphs.

Theorem 4 (Ramsey’s theorem for graphs). One can always find monochro-
matic cliques in any edge-coloring of a sufficiently large complete graph.

We re-express Ramsey’s theorem in terms of sets by representing vertices as
elements of some set and edges as pairs of elements in the set as follows:

Theorem 5 (Ramsey’s theorem for sets). For every natural number k and
finite set of colors Q, there exists a natural number r(k) such that for every
ordered set I with r(k) elements and for every function mapping each pair (i, j)
to a color C(i, j), there exists a subset J ⊂ I with k elements such that all pairs
in J are mapped to the same color.

We then formalize two-color Ramsey’s theorem for sets in Coq using bool to
represent two distinct colors:

Theorem Ramsey_single :
forall (k: nat), k > 0 ->
exists (rk: nat), rk >= k /\
forall (l: list nat), length l = rk ->
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forall (f: nat -> nat -> bool),
(exists (bl: list nat), length bl = k /\ subseq bl l /\
forall (i j: nat), i < j < k ->
f (nth i bl d) (nth j bl d) = true)

\/ (exists (bl: list nat), length bl = k /\ subseq bl l /\
forall (i j: nat), i < j < k ->
f (nth i bl d) (nth j bl d) = false).

We further specialize Ramsey to block pumping as follows:

Theorem Ramsey_single_prop :
forall (k: block_pumping_constant),
exists (rk: block_pumping_constant), rk >= k /\
forall (w: word) (bps: breakpoint_set rk w)

(P: nat -> nat -> Prop),
exists (bps’: breakpoint_set k w),
sublist bps’ bps /\

((forall (bp1 bp2: breakpoint bps’), bp1<bp2 -> (P bp1 bp2))
\/ (forall (bp1 bp2: breakpoint bps’), bp1<bp2 -> ˜(P bp1 bp2))).

We use “Ramsey’s constant” to refer to the existential witness r(k) dependent
on k given by Ramsey’s theorem. Instead of a computable two-element color-
ing function, we use an arbitrary predicate P; for this reason the proof of this
formulation of Ramsey requires LEM.

3.2 Closure properties of one-sided block pumpable languages

We next formalize the results from [4] that one-sided block pumpable languages
are closed under union, intersection and concatenation. The proofs turn on find-
ing the right block pumping constant for the combined language. We present the
definitions for combined languages, and refer the reader to our Coq development
for statements of the closure properties. We use l1, l2 and k1, k2 to denote
two languages and their pumping constants.

For union_lang l1 l2, the new pumping constant is max k1 k2. The
proof follows directly from case analysis on whether the word is in l1 or in l2,
and applying the block pumping property for the respective language.

For intersection_lang l1 l2, the new pumping constant is Ramsey’s
constant rk for max k1 k2. We know from Ramsey’s theorem that every break-
point set of size rk contains a subset bl of size k such that either all the break-
point pairs form pumps for w into l1 or they do not. By the one-sided block
pumping property for l1 and l2 we know that all breakpoint sets of size k con-
tain one pair of breakpoints which form pumps for w into l1 and l2 respectively.
In the case that bl contains all pumps for w into l1, we apply the one-sided
block pumping property for l2 to obtain a pair of pumps for both l1 and l2.
Otherwise, we find a contradiction.

For concat_lang l1 l2, the new pumping constant is k1+k2. For any
word w=w1++w2, either all of w1’s breakpoints are in itself, in which case we
pump w1, or all of w2’s breakpoints are in itself, in which case we pump w2. The
proof proceeds by case analysis on the above two possibilities.
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4 Ehrenfeucht, Parikh and Rozenberg’s pumping lemma

Having presented all the relevant formal definitions, we move on to EPR’s pump-
ing lemma. EPR’s pumping lemma states the following equivalence:

Theorem 6 (EPR’s pumping lemma). The block pumping property, the
block cancellation property and regularity are equivalent.

Fig. 1: The EPR commutative triangle

EPR’s pumping lemma amounts
to the commutative triangle in Fig-
ure 1. The equivalence can be shown
by proving either the clockwise or
counterclockwise direction of the tri-
angle. EPR choose regular → block
pumping property → block cancella-
tion property. We call languages that
satisfy the block cancellation property
(respectively the block pumping prop-
erty) with pumping constant k “BC(k) languages” (respectively “BP (k) lan-
guages”). Of the three arrows, showing that the block cancellation property
implies regularity (6) is by far the most difficult and involved.

Lemma 1 (EPR’s Lemma 1). Block cancellation property implies regularity.

EPR splits this proof into three sub-lemmas:

Lemma 2 (EPR’s Lemma 2). BC(k) languages are finite.

Lemma 3 (EPR’s Lemma 3). If a language is BC(k), so are all of its deriva-
tives.

Lemma 4 (EPR’s Lemma 4). Let P be some property of languages such that
(i) there are only finitely many languages that P, and (ii) forall σ in Σ, if L has
P then Lσ has P. Then P implies regularity.

EPR’s Lemma 4 follows directly from Myhill-Nerode [23], and Lemma 3 is
straightforward. On the other hand, EPR’s proof of Lemma 2 is a bit tricky
to pin down. In [14], EPR claim that the following is sufficient to show that
BC(k) languages are finite.

Lemma 5 (EPR’s Lemma 2-ish). Two BC(k) languages that agree on words
shorter than r(k), where r(k) is Ramsey’s constant, are equal.

EPR’s proof explains how to prove this lemma, but does not explain why it
is sufficient, i.e. why it implies the finiteness of block cancelable languages. We
complete EPR’s proof by re-interpreting Lemma 2-ish as follows, and then using
a classical set-theoretic fact about finiteness and injectivity which uses Lemma
2-ish to obtain the finiteness of block cancelable languages4.

4 In our Coq development, we define block_cancellable_matching_with as the
two-sided cancellation property, i.e. both L and L’s complement satisfy it, while
block_cancellable_with refers to the one-sided cancellation (pumping) prop-
erty. The same applies for the block pumping property.
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Definition is_short_lang (n: nat) (L: language) : Prop :=
forall (w: word), L w -> length w <= n.

Definition filter_shortlang (n: nat) : language -> language :=
fun L: language => (fun w: word => L w /\ length w <= n).

Theorem real_injectivity : forall (k: block_pumping_constant),
exists (rk: block_pumping_constant),
injective (block_cancellable_matching_with k)

(is_short_lang rk)(filter_shortbclang k rk).

The definition of injective is standard and taken from Coq’s Logic library,
while block_cancellable_matching_with and is_short_lang rk de-
scribe the properties of the domain and codomain, i.e. block cancelable languages
and short languages. The filter_shortbclang function is a dependently-
typed version of the simpler filter_shortlang shown above which trans-
forms languages in the domain into languages in the codomain by “shearing” off
the long words. Thus, in set-theoretic terms, our formulation of EPR’s Lemma
2-ish states that the shearing of a BC(k) language down to a language contain-
ing only “short” words of length less than r(k), where r(k) is Ramsey’s constant,
is injective. Next, we use the following set-theoretic fact:

Lemma 6. Every injective mapping onto some finite set is from a finite set.

Theorem inj_finite {X Y: Type} :
forall (P: X->Prop) (Q: Y->Prop) (f: {x | P x}->{y | Q y}),
inhabited {x | P x} -> injective P Q f -> is_finite_dep Q ->
is_finite_dep P.

We know that the function which shears a block cancelable language down to
short words is injective from EPR’s 2-ish. We easily know that short languages
containing length-bounded words are finite: there are exactly 2|Σ|

m

many of
them, where |Σ| is the size of the alphabet, and m is the length bound on words.
Therefore, by the above fact, we know that block cancelable languages are finite.

We instantiate P with block_cancellable_matching_with k, Q with
is_short_lang and f with our dependently-typed length-shearing function.
We additionally prove that there is at least one BC(k) language:

Lemma inhabited_bc : forall k : block_pumping_constant,
inhabited (bc_language k).

This allows us to finally show that BC(k) languages are finite:

Theorem bc_k_is_finite_dep: forall k : block_pumping_constant,
is_finite_dep (block_cancellable_matching_with k).

Digression on the Axiom of Choice. The theorem inj_finite is classical be-
cause constructing a finite set from another finite set requires an inverse func-
tion of an injective function, which is constructed via the Axiom of Choice.
As mentioned in §2, we use functional choice (FunctionalChoice_on from
Coq.Logic.ChoiceFacts). It is conceivable that this is a little stronger than
is required. While we cannot use constructive versions of Choice because the type
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of the domain is uncountable (sets of sets of words), it is plausible that with some
additional gyrations we might be able to use the weaker Axiom of Description,
a.k.a. the Axiom of No Choice (FunctionalRelReification_on):

(∀a. ∃!b. aRb)⇒
(
∃f. ∀a. aR(f(a))

)
While weaker, relying on the Axiom of No Choice would still be unfortunate.
We exorcise all forms of Choice by explicitly constructing the inverse in §5.

5 There and back again: an explicit inverse

We now present a Choice-free proof of EPR’s Lemma 2. Our proof is comprised
of three parts. First, we show that well-formed short languages are finite. Sec-
ond, we explicitly construct a function that computes a characteristic function
from a list of words. Finally, we prove correctness: that our function, when given
a well-formed short language represented as a list of words, computes the block
cancelable language that agrees with it on short words. We show that i) when
given a well-formed short language our function returns a block cancelable lan-
guage; and ii) every block cancelable language is in the image of our function.

5.1 Well-formed short languages are finite

Our function must be computable so it inputs short languages as list word
rather than word -> Prop. We require two properties of such lists to be suit-
able for building a block cancelable language: (P1) that they contain only “short”
words, i.e. of length less than some r(k); and (P2) that they agree with some
BC(k) language for all words up to length r(k).

Informally, the fact that there are a finite number of sets containing words
bounded by some length m is obvious: the cardinality is 2|Σ|

m

. Proving this using
Coq lists is less straightforward. Consider the following statement:

Lemma is_finite_shortlang_false : forall (rk: nat),
exists (LW: list (list word)), forall (l: list word),
In l LW <-> forall (w: word), In w l -> length w <= rk.

This statement is false because lists satisfying the right-hand side of the <->
are infinite: they can contain duplicates. We must also contend with the hassles
of permutations and ordering. We circumvent constructing and reasoning about
duplicate-free, length-lexicographically sorted lists of words by proving the finite-
ness of a stronger property, and then weakening it to obtain the length property
we require. We leverage Coq’s inductive definitions to define a relation subseq,
an order-preserving sublist relation of type list -> list -> Prop.

Inductive subseq (X: Type) : list X -> list X -> Prop :=
| subseq_nil : forall (l: list X), subseq [] l
| subseq_hm : forall (x: X) (l1 l2: list X),
subseq l1 l2 -> subseq (x :: l1) (x :: l2)

| subseq_hn : forall (x: X) (l1 l2: list X),
subseq l1 l2 -> subseq l1 (x :: l2).
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We can show that any list has a finite number of subseq lists, the proof of
which proceeds by induction on the subseq relation.

Theorem subseq_finite: forall (l: list word),
is_finite (fun s => subseq s l).

To show that there are finitely many lists containing words up to some length n,
we want to instantiate l with the list containing all words up to length n. We
define a function generate_words_of_length with correctness property:

Lemma generate_words_length_correct : forall (n: nat) (w: word),
In w (generate_words_of_length n) <-> length w = n.

We then use it to define a function generate_words_upto_length with
correctness property:

Lemma generate_words_upto_correct : forall (n: nat) (w: word),
In w (generate_words_upto n) <-> length w <= n.

Now we can state the finiteness of (P1) using generate_words_upto:

Theorem is_finite_shortwords: forall (n: nat),
is_finite (fun lw => subseq lw (generate_words_upto n)).

Next, we want to prune the lists that satisfy (P1) from is_finite_shortwords
and keep only those that also satisfy (P2), i.e. that agree with some BC(k) lan-
guage up to some length. We first prove that any subset of a finite list is finite:

Lemma p_in_list_finite {X: Type}: forall (P: X->Prop) (L: list X),
is_finite (fun l => P l /\ In l L).

This allows us to state that finiteness is preserved over conjunction:

Lemma is_finite_conj {X: Type} : forall (P: X->Prop) (Q: X->Prop),
is_finite (fun l => P l) ->
is_finite (fun l => P l /\ Q l).

Instantiating properties P and Q with (P1) and (P2) respectively, we obtain the
finiteness of well-formed short languages and are ready to define our inverse
function in §5.2.

Theorem is_finite_subseq_wf:
forall (k rk: block_pumping_constant),
is_finite (fun lw => subseq lw (generate_words_upto rk) /\

exists (l : bc_language k), agreement_upto k rk l lw 0).

5.2 The unshear function

Our unshear function inputs a list of words lw, and computes a characteristic
function—i.e. a word membership decider—for a block cancelable language.

We begin with a bird’s eye view description of unshear’s behavior. unshear
considers some arbitrary word w of length n. Starting with its input list lw_init,
unshear incrementally considers sets of words of increasing length, adding those
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that pass some condition check until it has considered every word of length up
to n. It then checks whether w is a member of the list computed so far, which we
denote lw. The intuition behind unshear turns on the fact that block cancel-
lation decreases word length, and that block cancelable languages are uniquely
determined by a subset of words up to some length.

We follow with details of the function unshear. We accompany each com-
putational function in bool with a correctness specification in Prop, and prove
correctness: the _prop holds iff the function returns true.

A block canceled word with breakpoints i, j, is the word with the subword
between the i-th and j-th symbol removed. We say that two indices cancel some
word w into L if the block canceled word is a member of L. We build a block
canceled word using firstn and skipn as follows:

Definition cancelled_word (w: word) (i j: nat) :=
firstn i w ++ skipn j w.

First, we construct the function which checks words to be added to the list
maintained by unshear. In particular, given some word w, we check for the
existence of a k-size breakpoint set out of all possible k-size breakpoint sets
for w, in which all pairs of breakpoints cancel w into some target list of words5.

We first define a function which checks whether, for a given breakpoint set,
all pairs of breakpoints cancel some word into a target list. The inner function
are_all_pumps_helper takes one breakpoint hd and a list of breakpoints
tl, and recursively traverses tl, pairwise checking the membership of the can-
celed word in the target list using a simple list membership checking function,
is_member. We omit both functions for brevity.

The outer function recursively traverses a list of breakpoints and calls the
inner function with each head element on the rest of the list, thus guaranteeing
pairs are checked in order. We express the ordered correctness property for this
function in terms of list indexing:

Fixpoint are_all_pumps (w: word) (l: list word)
(bps: list nat) :=

match bps with
| [] => true
| hd :: tl => if are_all_pumps_helper w l hd tl

then are_all_pumps w l tl
else false end.

Definition are_all_pumps_prop (w: word) (l: list word)
(bps: list nat) :=

forall (i j : nat), i < j < (length bps) ->
In (cancelled_word w (nth i bps d) (nth j bps d)) l.

We want to apply this function to all possible k-size breakpoint sets for some w.
We generate all k-size breakpoint sets via an order-preserving choose function
which chooses n elements from a list of greater than or equal to n elements.

Fixpoint choose {X: Type} (L: list X) (k: nat) {struct L} :=

5 We postpone discussion of why this condition works until §5.3
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match k with
| 0 => nil :: nil
| S k’ => match L with

| nil => nil
| h :: L’ => (map (fun l => h :: l) (choose L’ k’))

++ (choose L’ k) end end.

The list we give to choose is the list of all possible breakpoints for w, i.e. the
list starting from 0 and ending at S (length w).

Definition get_k_bps (w: word) (k: nat) :=
choose (iota 0 (S (length w))) k.

We use Coq’s existsb function to check if there is a k-size breakpoint set in the
list of all k-size breakpoint sets for which all pairs of breakpoints form pumps.

Definition exists_all_pumps_bps (w: word) (l: list word)
(k: nat) :=

existsb (are_all_pumps w l) (get_k_bps w k).
Definition exists_all_pumps_bps_prop (w: word) (l: list word)

(k: nat) :=
exists lp : list nat,
are_all_pumps_prop w l lp /\ In lp (get_k_bps w k).

Thus far, we have built the condition checker for an individual word w to be
added to lw maintained by unshear that is parameterized by a list word,
i.e. the target list in which canceled word membership is checked. However, the
role of lw in unshear is twofold: not only does it accept new words, it also serves
as the target list to determine the acceptance of future new words. unshear
considers individual words in batches of a certain length. When w contains words
of length up to some m, unshear considers all words of length S m. lw helps
unshear determine which new words of length S m to add, and then accepts
the ones that pass, updating itself to now contain words of length up to S m.

We first define the function which considers all words of some length. Here,
rk is the length bound of our initial list, n is the difference between the length
of the candidate word and rk, and lref is our target list.

Definition chuck (k rk n: nat) (lref: list word) :=
filter (fun w=>check w lref k) (generate_words_of_length (n+rk))

++ lref.
Definition chuck_prop (k rk n: nat) (lref: list word) (w: word) :=
(exists_all_pumps_bps_prop w lref k /\ length w = n+rk)

\/ In w lref.

We then define the recursive function which adds words of up to some length to
be structurally decreasing over word length nat.

Fixpoint chuck_length (k rk n: nat) (lref: list word) :=
match n with
| 0 => lref
| S n’ => chuck k rk n (chuck_length k rk n’ lref) end.
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We are now ready to define unshear, with return type word->Prop, or language.
We include an intermediate representation unshear_bool with return type
word->bool.

Definition unshear_bool (k rk: nat) (lref: list word) :=
fun w => is_member w (chuck_length k rk (length w) lref).

Definition unshear (k rk: nat) (lref: list word) :=
fun w => unshear_bool k rk lref w = true.

5.3 Functional correctness of unshear

To use unshear to prove that there are finitely many block cancelable lan-
guages, we need to show that when given a well-formed short language repre-
sented as a list lw, unshear computes the block cancelable language that agrees
with lw on short words. Proving the correctness of unshear thus amounts to
proving the following theorem:

Theorem unshear_correctness: forall (k: block_pumping_constant),
exists (rk: block_pumping_constant),
forall (l: bc_language_dec k) (lw: list word),
agreement_upto k rk l (chuck_length k rk lw 0) 0 ->
(forall w, In w lw <-> (shear_language rk (unshear k rk lw)) w)
/\ unshear k rk lw = (bc_language_dec_proj1 l).

The theorem states that for any decidable BC(k) language L and list of words
which agree with L up to length rk, (1) shear (unshear) lw = L, and (2)
unshear (shear) L = lw, i.e. shearing an unsheared list returns us the input
list, and unshearing a sheared language recovers us the language.

(1) amounts to showing unshear does not remove words from its input list
or add words of length less than rk, and is straightforward.

(2) amounts to showing unshear recovers the block cancelable language L.
This direction requires us to show the correctness of our chucking condition
described above [§5.2], and involves Ramsey’s theorem. In particular, we need
to show that chuck preserves language agreement between lw and L, with
language agreement defined as follows:

Definition agreement_upto (k rk: block_pumping_constant)
(l: bc_language_dec k)
(lw: list word) (m : nat) :=

forall w, In w lw <-> (length w <= m + rk
/\ bc_language_dec_proj1 l w).

First, we show that given a list of words lw which agrees with some block
cancelable language L up to length m, chucking in words of length m+1 results
in a list which agrees with L up to length m+1. This further breaks down into
two directions: 1) any word added by chuck must be in L and of length no
more than m+1, and 2) any word in L and of length no more than m+1 must
pass chuck’s condition check.
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Lemma IH_chuck_step: forall (k: block_pumping_constant),
exists (rk: block_pumping_constant),
forall (l: bc_language_dec k) (lw: list word) (m: nat),
agreement_upto k rk l lw m ->
agreement_upto k rk l (chuck k rk (S m) lw) (S m).

For the first direction, we have a word w that is either in lw or newly chucked
in, and we must show (i) |w| ≤ S m + rk and (ii) L w. In the case that w
is in lw, we are done. In the case that w is newly chucked, it satisfies the
length requirement by definition. By our chucking condition, there exists a k-
size breakpoint set lp with all breakpoint pairs forming pumps for w into lw.
We apply L’s block cancellation property with w and lp to obtain a cancelled
word w’ which agrees with w on membership in L, use the induction hypothesis
to obtain that w’ is in L, and thus complete the proof that w is in L.

For the second direction, we have a word w with (i) |w| ≤ S m + rk and
(ii) L w, and we must show that it is chucked in. This amounts to showing
that it satisfies the chucking condition: that there exists a k-size breakpoint set
containing all cancelable pumps for w into lw. This direction turns on Ramsey’s
theorem, as presented in (§2). From Ramsey’s theorem, we know that for any
r(k)-size breakpoint set, there exists a k-size breakpoint set with all pairs either
forming cancelable pumps for L or cancelable pumps for L’s complement. In the
first case, we have exactly the chucking condition. In the negative case, we have
a contradiction from L’s block cancellation property.

IH_chuck_step can be seen as the inductive step for chuck’s correctness
proof. We use it to prove chuck_length’s correctness theorem, which shows
by induction that chuck_length preserves language agreement up to length
m + rk for any arbitrary m, where rk is the length bound of lw.

Lemma IH_chuck:
forall (k: block_pumping_constant),
exists (rk: block_pumping_constant),
forall (l: bc_language_dec k) (lw: list word) (m: nat),
agreement_upto k rk l (chuck_length k rk 0 lw) 0 ->
agreement_upto k rk l (chuck_length k rk m lw) m.

This completes the proof of the second obligation for unshear’s correctness:
unshear adds exactly the same words that its associated block cancelable lan-
guage L accepts up to some length m + rk. Therefore, by language equality,
the resulting language is equivalent to L.

6 Related work

Automata theory. Automata and formal languages have been foundational topics
to computing since Turing’s introduction of his Machine [30]. Chomsky, together
with Marcel P. Schützenberger, introduced the Chomsky hierarhcy [5, 6] of reg-
ular, context-free, context-sensitive and recursively enumerable sets of strings.
These classes of languages have been extensively studied over the decades since
to yield results of both practical and theoretical interest [17].
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Pumping lemmas. Pumping lemmas connect the finite automata mechanism
to the words such mechanisms can accept. The best-known pumping lemmas
are by Rabin and Scott for regular languages and by Bar-Hilel, Perles, and
Shamir for context-free languages [17, 24]. Jaffe [18] and Ehrenfeucht, Parikh
and Rozenberg [14] pioneered the study of pumping properties that characterize
the regular languages. Follow-up work [29] provided evidence that other pumping
conditions are insufficient to give a characterization. Varrichio [31] solved an open
problem of EPR by establishing that the positive block pumping property (the
pump can be repeated but not canceled) also characterizes regular languages.
Chak, Freivalds, Stephan and Tan [4] studied the class of languages that are
block pumpable but whose complement is not.

Constructive mathematics. Brouwer originated the ideas of intuitionistic mathe-
matics [16], which removes the Law of Excluded Middle as a universal reasoning
principle. The generalized Axiom of Choice is not admitted by intuitionistic logic:
Diaconescu’s theorem shows that it leads to the Law of Excluded Middle [11].

Martin-Löf developed intuitionistic type theory [22] and the notion of de-
pendent types, thereby contributing to many associated mechanized proof en-
vironments. Thierry Coquand took these ideas and built the calculus of con-
structions [8], which in turn led to the calculus of inductive constructions [27],
the underlying logic of the Coq proof assistant [7]. Coq separates computation
(i.e. Type) from mathematical truths (i.e. Prop). The Axiom of Choice, in a
type-theoretical context, essentially erases this distinction.

Mechanizations of automata theory. Interest in mechanizing automata theory
began over thirty years ago [20]. Existing work in formalizing automata theory
focuses on languages in the Chomsky hierarchy: Kreitz [20] and Constable et al.
[10] formalize finite automata-based regular language theory in NuPRL, Dockzal
et al. [12, 13] formalize regular language theory in Coq, Ramos et al. [26] for-
malize context-free language theory in Coq and Zhang et al. [32] formalize the
Myhill-Nerode theorem using only regular expressions in Isabelle/HOL.

Some of these proofs are constructive, although in a few cases the authors
assume that they are working in the Chomsky hierarchy to begin with. For
example, Dockzal et al. [12] use the Coq type word -> bool to represent
languages, rather than word -> Prop as we do, and then go on to prove Myhill-
Nerode constructively. In a certain sense this begs the question, however.

There is also substantial existing work focusing on verified translation and
decision procedures for representations of regular languages. Filliatre [15] con-
structively proves the expressive equivalence of regular expressions and finite
automata in Coq, and extracts a functional program which translates a regular
expression to a finite automata, Almeida et al. [1] prove the correctness of a
partial derivative automata construction from regular expressions in Coq, Co-
quand and Nipkow et al. [9, 25] verify a decision procedure for regular expression
equivalence in Coq, and Krauss et al. [19] verify a regular expression equivalence
checker in HOL/Isabelle etc.
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7 Conclusion

To the best of our knowledge, the present work is the first mechanization of lan-
guage classes, namely the one-sided block pumpable and one-sided block cance-
lable languages, that are orthogonal to the Chomsky hierarchy and furthermore,
cannot be characterized algebraically or automata-theoretically. We have formal-
ized two important and significantly different pumping lemmas which both char-
acterize regularity: Jaffe’s pumping lemma and EPR’s block pumping lemma. We
have also formalized closure properties of one-sided block pumpable languages.
We have presented a new Choice-free proof of EPR’s theorem by defining an
inverse function from block cancelable to well-formed short languages.
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RAIRO Informatique théorique, 14:169–180, 1980.

30. A.M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem: A correction. Proceedings of the London Mathematical Society,
43(6):544–546, 1937.

31. Stefano Varricchio. A pumping condition for regular sets. SIAM Journal on Com-
puting, 26(3):764–771, 1997.

32. Chunhan Wu, Xingyuan Zhang and Christian Urban. A Formalisation of the
Myhill-Nerode Theorem Based on Regular Expressions (Proof Pearl). ITP, 2011.


