
Pumping, With or Without Choice

Aquinas Hobor1,2 Elaine Li1,3 Frank Stephan 2

1Yale-NUS College

2National University of Singapore

3Runtime Verification, Inc

APLAS 2019

1 / 46

Pumping

Regularity ⇒ Rabin-Scott

Rabin-Scott’s Pumping Lemma (Rabin, Scott 1959)

If a language L is regular, then there exists a k s.t. ∀w ∈ L. |w | ≥
k ⇒ ∃x , y , z ∈ Σ∗. w = xyz ∧ |xy | ≤ k ∧ y 6= ε ∧ ∀n ∈ N. xynz ⊆ L.

Non-regular languages satisfy it (Sommerhalder 1980)

Modus tollens form to show irregularity, e.g. L = 0n1n

2 / 46

Pumping

Regularity ⇔ Jaffe

Jaffe’s Pumping Lemma (Jaffe 1978)

A language L is regular iff there exists a k s.t.
∀w ∈ Σ∗. |w | = k ⇒ ∃x , y , z ∈ Σ∗. w = xyz ∧ y 6= ε ∧ ∀u ∈
Σ∗. n ∈ N, xyzu ∈ L ⇔ xynzu ∈ L.

3 / 46

Pumping

Regularity ⇔ Jaffe

Definition (Derivative)

Lx = {y ∈ Σ∗ : xy ∈ L} is the derivative of L with respect to x .

e.g. L = 0∗1∗2∗, L’s derivatives are L0 = 0∗1∗2∗, L01 = 1∗2∗,
L012 = 2∗.

Jaffe states that every derivative of language L is equivalent to some
derivative with label length shorter than or equal to k .

Myhill-Nerode Theorem (Myhill, Nerode 1958)

A language L is regular iff it has finitely many derivatives.

4 / 46

Pumping

Regularity ⇔ EPR

The block pumping (cancellation) property (EPR, 1981)

L ⊆ Σ* has the block pumping property iff there exists a k such that for
all w ∈ Σ* and all ways of inserting k breakpoints into the word, there
exist two breakpoints such that the word part in between them can be
repeated (omitted) without affecting word membership.

Theorem of Ehrenfeucht, Parikh and Rozenberg (EPR, 1981)

Regularity, the block pumping property, and the block cancellation
property are equivalent.

5 / 46

Pumping

Picture view

6 / 46

Pumping

Picture view

7 / 46

Pumping

Picture view

8 / 46

Pumping

Picture view

9 / 46

Pumping

Contributions

Coq formalization of Jaffe’s and EPR’s pumping lemmas, and block
pumpable language closure properties;

Clarification of a gap in EPR’s proof that block cancelable languages
are regular that implicitly uses the Axiom of Choice;

New choice-free proof using an explicit construction of block
cancelable languages from well-formed input sets.

10 / 46

Pumping

Roadmap

1 Pumping

2 With choice

Proof sketch
Ramsey’s theory

3 Without choice

“unshear” function
Proof of correctness

11 / 46

With choice

EPR’s Theorem

12 / 46

With choice EPR’s proof

EPR’s proof, in pictures

13 / 46

With choice EPR’s proof

EPR’s proof, in pictures

14 / 46

With choice EPR’s proof

EPR’s proof, in pictures

15 / 46

With choice EPR’s proof

“It is sufficient to show that...”

16 / 46

With choice EPR’s proof

“It is sufficient to show that...”

17 / 46

With choice Coq proof

Finite injectivity, in Coq

Theorem (Finite injectivity)

: forall (P Q : X -> Prop) (f : {x | P x} -> {x | Q x}),

inhabited {x : X | P x} ->

injective P Q f ->

is_finite_dep Q ->

is_finite_dep P.

where:

X - language

P - BC(k)

Q - r(k)-short

f - mapping from BC(k) languages to r(k) short languages

18 / 46

With choice Coq proof

Finitehood, in Coq

Definition (Dependent finitehood)

is_finite_dep {X : Type} (P : X -> Prop) : Prop :=

exists (L : list {x | P x}), forall (x : {x | P x}), In x L.

Definition (Finitehood)

is_finite {X : Type} (P : X -> Prop) :=

exists (L : list X), forall (x : X), In x L <-> P x.

19 / 46

With choice Coq proof

Axiom of functional choice

Definition (Functional choice)

forall R : A -> B -> Prop,

(forall x : A, exists y : B, R x y) ->

(exists f : A -> B, forall x : A, R x (f x)).

where:

A - {x | Q x}, i.e. r(k)-short

B - {y | P y}, i.e. BC(k)

R - y ”shears down” to x

f - mapping from r(k)-short languages to BC(k) languages

20 / 46

With choice Coq proof

Picture view

21 / 46

With choice Ramsey

Ramsey theory

22 / 46

With choice Ramsey

Ramsey on graphs

One can always find monochromatic cliques in any edge-coloring of a
sufficiently large connected graph (Ramsey 1930).

23 / 46

With choice Ramsey

Ramsey on sets

For every natural number k and finite set of colors Q, there exists a
natural number r(k) such that for every ordered set I with r(k) elements
and for every function mapping each pair (i , j) to a color C (i , j), there
exists a subset J ⊂ I with k elements such that all pairs in J are mapped
to the same color.

24 / 46

With choice Ramsey

Ramsey on breakpoint sets

Theorem (Ramsey’s theorem for breakpoint sets)

forall (k: block_pumping_constant),

exists (rk: block_pumping_constant), rk >= k /\

forall (w: word) (bps: breakpoint_set rk w)

(P: nat -> nat -> Prop),

exists (bps’: breakpoint_set k w),

sublist bps’ bps /\

((forall (bp1 bp2: breakpoint bps’), bp1<bp2->(P bp1 bp2))

\/ (forall (bp1 bp2: breakpoint bps’), bp1<bp2->~(P bp1 bp2))).

25 / 46

With choice Ramsey

Roadmap

1 Pumping

2 With choice

Proof sketch
Ramsey’s theory

3 Without choice

“unshear” function
Proof of correctness

26 / 46

Without choice

Picture view

27 / 46

Without choice

Unshear correctness

1 Shearing an unsheared list returns us the input list;

2 Unshearing a sheared language recovers us the BC(k) language.

28 / 46

Without choice

Unshear, pictorially

29 / 46

Without choice

Unshear, pictorially

30 / 46

Without choice

Unshear, pictorially

31 / 46

Without choice

Unshear, pictorially

32 / 46

Without choice

The chucking function

33 / 46

Without choice

The chucking function

34 / 46

Without choice

The chucking function

35 / 46

Without choice

The chucking function

36 / 46

Without choice

Chucking condition

Definition (Chucking function)

Definition chuck (k rk n : nat) (lref : list word) :=

filter (fun w => exists_all_pumps w lref k)

(generate_words_of_length (n + rk))

++ lref.

Definition (Chucking condition)

Definition chuck_prop (k rk n : nat) (lref : list word)

(w : word) :=

(exists_all_pumps_bps_prop w lref k /\ length w = n + rk)

\/ In w lref.

37 / 46

Without choice

Unshear, pseudocode

1 Input: well-formed list of short words lw and candidate word w

2 Output: membership for w in BC (k) language that lw agrees with on
short words

3 Algorithm: incrementally consider sets of all words from length r(k)
to length |w |

1 For every word, check the existence of a “full” set of k breakpoints
such that every pair of breakpoints pumps the word down into lw

2 If such a set exists, chuck, i.e. add, word into reference list lw
3 If such a set does not exist, ignore
4 Repeat with updated lw and set of words of length plus one until |w | is

reached
5 Check membership of w in lw

38 / 46

Without choice

Unshear correctness

1 Shearing an unsheared list returns us the input list;

2 Unshearing a sheared language recovers us the language.

Theorem unshear_correctness:

forall (k: block_pumping_constant),

exists (rk: block_pumping_constant),

forall (l: bc_language_dec k) (lw: list word),

agreement_upto k rk l (chuck_length k rk lw 0) 0 ->

(forall w, In w lw <-> (shear_language rk (unshear k rk lw)) w)

/\ unshear k rk lw = (bc_language_dec_proj1 l).

39 / 46

Without choice

shear (unshear)

Trivial!

40 / 46

Without choice

unshear (shear)

chuck is chucking in the right words!

Lemma IH_chuck_step: forall (k: block_pumping_constant),

exists (rk: block_pumping_constant),

forall (l: bc_language_dec k) (lw: list word) (m: nat),

agreement_upto k rk l lw m ->

agreement_upto k rk l (chuck k rk (S m) lw) (S m).

Definition agreement_upto (k rk: block_pumping_constant)

(l: bc_language_dec k)

(lw: list word) (m : nat) :=

forall w, In w lw <-> (length w <= m + rk

/\ bc_language_dec_proj1 l w).

41 / 46

Without choice

Unshear correctness

Induction step for the leftward direction:

Given a word w that is in the new lw , we must show that:

|w | ≤ S m + k
L w

In the case that w was already in lw , we are done.

In the case that w is newly chucked in,

The length requirement is satisfied by chuck’s specification
By our chucking condition, there exists a “full” breakpoint set lp. We
specialize L’s block cancelation property with w and lp to obtain a
canceled word w ′, which agrees with w on membership.

42 / 46

Without choice

Unshear correctness

Induction step for the rightward direction:

Given a word w that satisfies:

|w | ≤ S m + k
L w

We must show that chuck actually does chuck it into lw , i.e. that it
satisfies the chucking condition of having a “full” breakpoint set into
lw .

From Ramsey, we know that for any r(k)-size breakpoint set, we can
find a monochromatic k-size breakpoint set lp.

In the case that all pairs in lp are cancelable pumps into lw , we satisfy
the chuckable condition;
In the case that all pairs in lp are not cancelable pumps into lw , we
reach a contradiction from the fact that L is BC (k).

43 / 46

Without choice

unshear (shear)

Lemma IH_chuck:

forall (k: block_pumping_constant),

exists (rk: block_pumping_constant),

forall (l: bc_language_dec k) (lw: list word) (m: nat),

agreement_upto k rk l (chuck_length k rk 0 lw) 0 ->

agreement_upto k rk l (chuck_length k rk m lw) m.

chuck is chucking in the right words!

44 / 46

Without choice

New proof, pictorially

45 / 46

Without choice

New proof, pictorially

46 / 46

	Pumping
	With choice
	EPR's proof
	Coq proof
	Ramsey

	Without choice
	Without choice
	Without choice
	Without choice

