
	

	

	

FORMALIZING

BLOCK PUMPABLE LANGUAGE
THEORY

ELAINE LI

Capstone Final Report for BSc (Honours) in

Mathematical, Computational and Statistical Sciences

Supervised by: Aquinas Hobor

AY 2018/2019

Acknowledgements

This capstone project is indebted to Aquinas Hobor, for being there from the begin-

ning of my journey into formal logic and computer science, and for indulging all of

my idiosyncratic investigations from alien logic to obnoxious induction principles.

This capstone project is also indebted to Frank Stephan, for introducing me to

the field through CS4232 Theory of Computation and CS5236 Advanced Automata

Theory, and for generously giving his time to informally supervise this capstone.

I would like to thank the wonderful Wang Shengyi for his patience and Coq wiz-

ardry, which helped me make progress at a critical juncture.

I would like to thank Olivier Danvy for his mentorship, and Ilya Sergey for his kind-

ness, understanding and knowledgeability.

This capstone benefited greatly from Certified Programming with Dependent Types

by Adam Chlipala, in particular its spirited dedication to never throwing in the

towel in the face of the dinosaur that is Coq’s type universe.

Finally, I would like to thank my beloved family and friends for their presence and

support throughout this journey.

3

Abstract

We present a mathematical formalization of results related to regularity and block

pumping from automata theory, mechanized in the Coq proof assistant. Our formal-

ization is similar in scope to existing work on formalizing regular and context-free

language theory. We define formal languages and their properties, and prove a

central equivalence between regularity, the block pumping property, and the block

cancellation property. We also prove closure properties of block pumpable languages

under union, concatenation and intersection.

4

Statement of Author’s Contributions

All definitions used in the formal proof are standard, with the exception of my defini-

tion of regularity, which to the best of my knowledge is novel in its use of finiteness as

a direct definition. Excluding explicitly-cited proofs and Ramsey’s Theorem, which

I admit as an axiom, all lemmas and theorems in the Coq development are stated

and proven by me.

5

Intended Audience

The reader is assumed to have familiarity with the logic underlying the Coq proof

assistant, the Calculus of Inductive Constructions, as well as elementary automata

theory and combinatorics. All relevant formal and informal definitions are presented

in the following section.

6

Notation and Definitions

We use Σ to refer to a finite alphabet, and σ to refer to symbols in the alphabet. We

use variables x, y, z, w, v to denote words, and the special symbols ε and ∅ to denote

the empty word and empty set respectively. We use |w| to denote the length of w.

We use L, H to denote languages, and Lx to denote the derivative of a langauge

with respect to a word x, and Lσ to denote the derivative of a language with respect

to one symbol from the alphabet. We use bp1, bp2 to denote breakpoints, and i, j, k

to denote natural numbers.

Definition. Regular expressions

The set-theoretic expressions used in regular expressions are defined as follows:

• The special symbol ∅ denotes the empty set, or {}.

• The special symbol ε denotes the empty word.

• A finite list of strings in set brackets denotes the set of the corresponding

elements.

• For any set L, L* denotes the set of all strings obtained by concatenating

finitely many strings from L.

• For any two sets L and H, the union of L and H, written L ∪H, denotes the

set of all strings which are either in L or in H.

• For any two sets L and H, the intersection of L and H, written L∩H, denotes

the set of all strings which are in in both L and H.

7

• For any two sets L and H, the concatenation of L and H, written L · H,

denotes the set {v ·w : v ∈ L∧w ∈ H}, the set of concatenations of members

of L and H.

• For any two sets L and H, the set difference of L and H, written as L − H,

denotes the set difference of L and H: {u : u ∈ L ∧ u /∈ H}.

Regular expressions are recursively defined as follows:

• The constants ε and ∅ are regular expressions.

• If a is any symbol, then a is a regular expression.

• If E and F are regular expressions, then E ∪ F is a regular expression.

• If E and F are regular expressions, then E · F is a regular expression.

• If E is a regular expression, then E* is a regular expression.

Definition. Finite automata

Finite automata come in two forms, deterministic and non-deterministic.

• Deterministic finite automaton (DFA):

A deterministic finite automaton (Q,Σ, δ, s, F) is a state-based abstract ma-

chine which processes an input string and either accepts or rejects it. Q is

the set of states, Σ is the finite alphabet, δ is the transition function mapping

pairs from Q × Σ to Q, s is the starting state and F is the set of accepting

states. The transition function δ : Q×Σ→ Q defines a unique extension with

8

domain Q×Σ* as follows: δ(q, ε) = q for all q, and δ(q, wa) = δ(δ(q, w), a) for

all q ∈ Q,w ∈ Σ* and a ∈ Σ. For any string w ∈ Σ*, the DFA accepts w iff

δ(s, w) ∈ F .

• Non-deterministic finite automaton (NFA):

Intuitively, a non-deterministic finite automaton is a deterministic finite au-

tomaton with a multi-valued transition function. For any string w ∈ Σ*, the

NFA accepts w iff there exists a run of the NFA which accepts w.

Definition. Regular grammar

A grammar (N,Σ, P, S) consists of two disjoint sets of symbols N and Σ called

non-terminals and terminals respectively, a set of derivation rules P , and a starting

symbol S ∈ N . The derivation rules take the form l → r, where l contains at least

one symbol from N . v can be derived from w in one step iff there exist x, y and a

rule l → r such that v = xly and w = xrw. v can be derived from w in arbitrary

number of steps iff there are n ≥ 0 and u0, u1, ..., un ∈ (N ∪ Σ)∗ such that u0 = v,

un = w and um+1 can be derived from um in one step for each m < n. A regular

grammar is one for which all derivation rules in P are of the form A → wB or

A→ w, where A,B ∈ N and w ∈ Σ?.

9

Contents

1 Overview 12

2 Formal language theory 13

2.1 Introduction . 13

2.2 An example . 14

2.3 Pumping properties . 15

2.4 Mr. Pumping Lemma . 20

3 Formalizing automata theory 22

3.1 On an issue of representation . 22

3.2 Existing work . 22

3.3 Motivations . 24

3.4 Principles . 25

4 Our formalization 27

4.1 Coq standard library definitions . 27

4.2 Our definitions . 27

4.3 Ramsey’s Theorem . 33

4.4 Ehrenfeucht, Parikh and Rozenberg’s Theorem 36

10

4.4.1 Lemma 2 . 38

4.4.2 Lemma 3 . 49

4.4.3 Lemma 4 . 50

4.5 Closure properties . 54

5 Discussion 55

6 Conclusion 57

7 References 58

A Coq project file organization 59

B Additional definitions 61

11

1 Overview

In the first section, we introduce formal languages and motivate them as an inter-

esting object of study due to their diverse representation mechanisms. We provide

an overview of the existing results on a class of mathematical properties of formal

languages called pumping properties.

In the second section, we motivate automata theory in general, and block pumpable

language theory in particular, as an interesting object of formalization. We then

provide an overview of the existing work on formalizing automata theory in various

proof assistants. Finally, we give an account of the motivating principles behind our

formalization, and the design choices they give rise to.

In the third section we describe our formalization. We present the definitions

of the relevant mathematical objects and the statement of the central results ex-

pressed in Coq’s logic. We explicate the formal proof through both a theoretical

and proof engineering lens, highlighting points of divergence in the informal and

formal mathematical argument and points of technical difficulty with Coq’s type

theory.

In the final section we discuss questions that arose in the process, and ideas for

further directions.

12

2 Formal language theory

2.1 Introduction

Formal languages are defined as sets of words over a finite alphabet with decidable

membership, and are broadly studied in theoretical computer science and discrete

mathematics. Formal languages are mathematical objects that enjoy diverse rep-

resentations based on the different mechanisms for checking or generating word

membership:

• Algebraic expressions: formal languages are sets of words that can be denoted

using general set-theoretic notation;

• Grammars: formal languages are sets of words that can be generated according

to certain derivation rules;

• Automata: formal languages are sets of words recognizable by various kinds of

abstract machines, or automata;

• Transducers: formal languages are sets of words computed by applying some

function to sets of words.

The various representations draw inspiration from different disciplines. For example,

regular expressions draw inspiration from traditional set theory. Recursive gram-

mars were developed by linguists such as Axel Thue and Noam Chomsky[chomsky],

who classified various formal grammars on what is now known as the Chomsky hi-

13

erarchy. The languages on the Chomsky hierarchy and their respective represen-

tations [hopcroft, kozen, khou, frank] are summarized in the table below. Let

A, B ∈ N denote non-terminals, a ∈ Σ denote a terminal alphabet symbol, and

α, β, γ ∈ (N ∪ Σ)? denote any string of non-terminal and terminals.

Level Language Grammar Automata

3 Regular A→ a or A→ aB Finite state automaton

2 Context-free A→ α Pushdown automaton

1 Context-sensitive αAβ → αγβ Linear-bounded automata

0 Recursively enumerable αAβ → γ Turing machine

2.2 An example

The following example of a regular language provides an intuition for the different

representations of regular languages. Let L be the language over alphabet Σ =

{0, 1, 2} containing only words of odd length.

• The regular expression denoting L is

L = {00, 01, 02, 10, 11, 12, 20, 21, 22}? · {0, 1, 2}.

• The deterministic finite automaton recognizing L is

({s, t}, {0, 1, 2}, δ, s, {t}), with δ(s, a) = t and δ(t, a) = s for all a ∈ {0, 1, 2}.

14

• The regular grammar generating L is ({S, T}, {0, 1, 2}, P, S} with

P = {S → 0T |1T |2T |0|1|2, T → 0S|1S|2S}.

2.3 Pumping properties

Pumping properties are a well-studied class of mathematical properties of formal

languages. Pumping lemmas, or iteration theorems, arise from the observation that

infinite regular languages containing words of arbitrary length are recognizable by

finite automata with a fixed number of states. This is enabled by the fact that

repeating or omitting some parts in a word belonging to some regular language does

not affect its membership. The word part which is repeated or omitted is referred to

as the “pump”. This intuition is captured in the original pumping lemma [hopcroft,

kozen, khou, frank], stated as follows:

Theorem 2.1. Pumping Lemma

Let L ⊆ Σ∗ be a regular language. Then there is a constant k such that for every

u ∈ L of length at least k there is a representation x · y · z = u such that |xy| ≤ k,

y 6= ε and xy∗z ⊆ L.

The original pumping lemma is a positive property, because it only characterizes

15

members of the regular language, and is silent on non-members. Further, it states

a necessary but insufficient condition for regularity. For this reason, it is often used

in modus tollens form to show that a language is non-regular.

Example. Let Σ = {0, 1} and L = {0n1n : n ∈ N}. L is non-regular.

Proof. To show that L is non-regular, we show that L does not satisfy the pumping

lemma with any constant. Assume that L satisfies the pumping lemma with some

constant k. Consider the word 0k1k ∈ L. By assumption there is a representation

x · y · z = 0k1k such that |xy| ≤ k and y 6= ε. However, xyyz = 0k+n1k for some

n > 0, and by definition, xyyz /∈ L. Therefore, we reach a contradiction, and such

a constant k does not exist.

Further investigation of pumping properties for regular languages was motivated

by the quest to find a pumping condition equivalent to regularity, that is, both

necessary and sufficient.

John Myhill and Anil Nerode [nerode] formulated a property of formal languages

that uniquely characterizes regularity unrelated to the notion of pumping.

Theorem 2.2. Myhill-Nerode Theorem

Given a language L, let Lx = {y ∈ Σ∗ : xy ∈ L} be the derivative of L with respect

to x. The language L is regular iff the number of different derivatives Lx is finite.

In 1978, Jaffe [jaffe] drew from the central idea of Myhill-Nerode – a language

having finitely many derivatives – and formulated a version of the pumping property

that is equivalent to regularity.

16

Theorem 2.3. Jaffe’s Pumping Lemma

A language L ⊆ Σ∗ is regular iff there is a constant k such that for all x ∈ Σ∗

and y ∈ Σk there are u, v, w with y = uvw and v 6= ε such that, for all h ∈ N,

Lxuvhw = Lxy.

Proof. ⇐ Assume that L is regular. Then, by Myhill-Nerode Theorem, L has a finite

number of derivatives. Let the number of derivatives of L be k. By the pigeonhole

principle, two of k + 1 derivatives of L must be the same. Let the two derivatives

be Lxu and Lxuv, where xu is a prefix of xy and |y| = k. Let w ∈ Σ? be xy = xuvw.

For any z ∈ Σ?, z ∈ Lxuw iff wz in Lxu iff wz ∈ Lxuv iff z ∈ Lxy, thus Lxuw = Lxy.

By induction over i, we can show that Lxu(vi) = Lxu, and thus Lxu(vi)w = Lxy.

⇒Whenever a string z is of length at least k, Lz is equal to Lxuw with |xuw| < |z|

and therefore every derivative is equal to one of length up to k. As the alphabet

is finite, there are only finitely many derivatives with word label length up to k.

Therefore, L is regular by the Myhill-Nerode Theorem.

In 1979, Ehrenfeucht, Parikh and Rozenberg [EPR] showed that a more natural

formulation of pumping based on “blocks” is also equivalent to regularity.

Definition. L ⊆ Σ* has the block pumping property if there is a k such that for all

x, x, y1, . . . , yk, w′ ∈ Σ* if x = wy1 . . . ykw
′ then there exist m, j, i ≤ m < j ≤ k

such that ym+1 . . . yj is a pump for x relative to L.

Theorem 2.4. EPR’s Theorem

Regularity, the block pumping property and the block cancellation property are equiv-

alent.

17

The above notions of pumping focus solely pumping properties in relation to

regularity. In 2016, Chak et al. [chak] used the positive block pumping property to

characterize a class of languages called block pumpable languages. They show that

the class of block pumpable languages is orthogonal to the Chomsky hierarchy. In

particular, every regular language is positively block pumpable, but there exist non-

regular languages that are positively block pumpable [chak]. We provide a proof

for the example language given in [chak].

Definition. Let xn, yn be inductively defined as follows:

x0 = 0

y0 = 1

xn+1 = xnynynxnynxnxnynxnynynxnynxnxnyn

yn+1 = ynxnxnynxnynynxnynxnxnynxnynynxn

It can be shown that every xn and yn is cube-free, and of length 16n.

Example. Let L = {z ∈ 0, 1? : ∀n ∈ N, z 6= xn ∧ z 6= yn}. L is positively block

pumpable but not regular.

Proof. We first show that L is not regular by showing that its complement is not

regular. By de Morgan’s law, the complement L = {z ∈ 0, 1? : ∀n ∈ N, z = xn ∨ z =

yn}. Therefore, L is cube-free, and cannot contain any subset of the form uv?w, and

thus it cannot satisfy any pumping property. Therefore, L is not regular.

We then show that L is postively block pumpable with block pumping constant 5.

18

By the properties of xn and yn, all cube-containing words are members of L, and all

words not of length 16m for some m ∈ N are members of L. Let x ∈ L and let the

breakpoints split the word x into w0(1)w1(2)w2(3)w3(4)w4(5)w5. Now we show that

either breakpoints (1,3) or breakpoints (2,3) define a pump ∀n ∈ N.

• When n ≥ 3, the resulting word with the pump repeated three times must by

definition contain a cube. Because all cube-containing words are members of

L, the resulting word is a member of L.

• When n = 1, the word remains unchanged and w ∈ L by assumption.

• When n = 0 or n = 2, we show that omitting or twice-repeating either of the

breakpoint pairs results in a word w′ that is not of length 16m for any m ∈ N.

By assumption, |x| 6= 16m for all m ∈ N. Now either the prefix w0w1w2 before

breakpoint (3) or the suffix w4w5 after breakpoint (3) has length less than or

equal to |x|/2. Assume without loss of generality that |w0w1w2| ≤ |x|/2 and

|w3w4w5 ≥ |w|/2.

– If we select breakpoints (1,2), when n = 0, w′ = w0w2w3w4w5, and when

n = 2, w′ = w0w1w1w2w3w4w5.

– If we select breakpoints (1,3), when n = 0, w′ = w0w3w4w5, and when

n = 2, w′ = w0w1w2w1w2w3w4w5.

Because the shortest possible resulting word |w0w3w4w5| ≥ |x|/2, and the

longest possible resulting word w0w1w2w1w2w3w4w5 ≤ 3|x|/2, only one w′ can

have a length which is a power of 16. Therefore, the other pair of breakpoints

defines a pump.

19

Further, there exist context-free languages that are positively block pumpable.

They also show the following closure properties of block pumpable languages:

Theorem 2.5. Block pumping closure properties

Block pumpable languages are closed under intersection, union, concatenation, but

not under Kleene star and set difference.

2.4 Mr. Pumping Lemma

We present a game-semantic formulation1 of the proof that some arbitrary language

L satisfies the block pumping property to further clarify the structure of the proof.

Consider a game between you and an interlocutor, Mr. Pumping Lemma. Your

objective is to convince Mr. Pumping Lemma that L satisfies the block pumping

property; Mr. Pumping Lemma’s objective is to undermine your attempt. You and

Mr. Pumping Lemma take turns to make moves: you pick the existential witnesses,

and Mr. Pumping Lemma picks the universal witnesses.

1. You pick a block pumping constant k.

2. Mr. Pumping Lemma picks a word w and a set of breakpoints bps of size k.

3. You pick two breakpoints bp1, bp2 from the breakpoint set bps.

4. Mr. Pumping Lemma pumps the subword between bp1 and bp2 to his heart’s

content.
1The application of game semantics to pumping lemmas is inspired by

https://math.stackexchange.com/questions/151744/application-of-pumping-lemma-for-regular-
languages

20

https://math.stackexchange.com/questions/151744/application-of-pumping-lemma-for-regular-languages
https://math.stackexchange.com/questions/151744/application-of-pumping-lemma-for-regular-languages

If the resulting word w′ has the same membership as the original word w, then

you win, and you have shown that L satisfies the block pumping property. The

game semantics is recognized by L iff w is recognized by L.

The game semantics highlights the fact that your ability to win against Mr.

Pumping Lemma turns on you choosing a block pumping constant in your first

move and pair of breakpoints in your second move that withstand whatever word,

breakpoint set and repetition number your opponent picks. Indeed, proofs involving

the block pumping property centrally turn on finding the right existential witnesses

for the block pumping constant and the breakpoints.

21

3 Formalizing automata theory

3.1 On an issue of representation

The diverse representation mechanisms of formal languages paired with proofs of

their equivalence [hopcroft, kozen, khou, frank] allow informal proofs to pick the

representation best suited for the argument at hand. For example, the proof that

regular languages satisfy the original pumping condition is easily shown using the

automata-based representation of regular languages, by appeal to the pigeonhole

principle [hopcroft, khou]. The same proof using the regular expression-based

representation [kozen, frank] requires structural induction, which breaks down into

individual cases for the empty string, intersection, concatenation and Kleene star,

and is much more involved.

This advantage is lost in formal, mechanized proofs. A formal proof environ-

ment imposes a high cost overhead on defining and commuting between multiple

representations of the same mathematical object, as will be evidenced in the rest of

this chapter. This representational tension makes formal languages an interesting

candidate for formal verification in a proof assistant.

3.2 Existing work

Our work is broadly situated in the area of formalizing mathematics. Interest in

formalizing automata theory in particular dates back to 1997, and was motivated

by the question of whether constructive type theory is a natural expression for

22

computational mathematics as set theory is for classical mathematics. Consta-

ble et al. [constable] chose automata theory, and the Myhill-Nerode Theorem

in particular, as the object of constructive formalization, because it is a canon-

ical instance of extracting an algorithm from a proof. Their work consists of a

formalization the Myhill-Nerode Theorem and its corollary state minimization al-

gorithm in NuPrl using the automata-based definition of regular languages, and

notably, took a team of 4 researchers 18 months to complete. Representations of

formal languages, in particular regular expressions, are well-studied in computer

science, and summarized by Nipkow et al. [nipkow], who present an overview of

five different formal decision procedures for regular expression equivalence. No-

tably, a formalization of the Myhill-Nerode Theorem using regular expressions has

been completed in HOL/Isabelle [proofpearl]. The authors motivate their rep-

resentation choice by appealing to theoretical elegance and representational cost –

HOL/Isabelle’s type system does not support higher order type quantification, mak-

ing finite graphs prohibitively difficult to define. Formal results involving regular

and context-free languages have been obtained in various proof assistants, including

HOL4, HOL/Isabelle Isabelle, Agda and Coq.

Existing work on formalizing automata theory in Coq primarily consists of two

works on regular and context-free languages respectively. Doczkal et al. [constructive]

present a constructive theory of regular languages in Coq. They define both automata-

based and regular-expression-based representations of regular languages, and prove

Kleene’s theorem, which states the equivalence between them. Their development

also includes constructive proofs of Myhill-Nerode’s Theorem, the regular pump-

23

ing lemma and closure properties of regular languages, using the automata-based

representation.

Ramos et al. [ramosresults][ramospump] formalized context-free language

theory using a grammar-based representation of context-free languages in Coq. They

prove the pumping lemma for context-free languages, closure properties, grammar

minimization properties, and reducibility into Chomsky normal form. Their pa-

per mentions formalizing pushdown-automata-based representations of context-free

languages in Coq as a plan for future development.

More recent results on regular and context-free language theory are practically

and theoretically motivated by the desire to provide a reasoning framework for the

two most important formal language classes on the Chomsky hierarchy. A salient

practical application for regular and context-free languages are text processing and

parser generation respectively. To the best of my knowledge, this work is the first

formalization of a language class that is orthogonal to the Chomsky hierarchy.

3.3 Motivations

Block pumpable language theory presents itself as an interesting candidate for for-

malization because block pumpable languages cannot be directly defined in terms

of the standard representation mechanisms for formal languages, and instead are di-

rectly defined in terms of their block pumping property. Additionally, results from

block pumpable language theory utilize ideas from combinatorics such as Ramsey’s

Theorem and Konig’s Lemma, which are absent from regular and context-free lan-

guage theory.

24

3.4 Principles

Our formalization makes the salient design choice to rely solely on the inductive

data types for natural numbers, lists and sigma types in Coq’s standard library to

define our mathematical objects. We import no additional mathematical libraries

of formalized results or syntactical extensions to Coq’s tactic language. Our reasons

for doing so are twofold: 1) we believe that relying on a small set of simple algebraic

data types maximizes simplicity and clarity of the proofs, and 2) we believe that

developing definitions from scratch and proving properties about them incrementally

provides both the prover and the reader with a more thorough understanding of the

mathematical argument, as well as of Coq’s metalogic and type theory.

As a consequence, we develop extensive libraries containing supplementary lem-

mas about the mathematical objects we reason about in our proofs, including natural

numbers, polymorphic lists, breakpoint sets, finite types and injective mappings.

Further, we utilize a relatively small subset of Coq’s tactic language for proof

construction. Excluding book-keeping tactics such as assert for adding proven

facts into the context, remember for naming variables and clear for removing

used hypotheses from the context, and equality-based tactics reflexivity and

rewrite for applying the reflexivity and transitivity of equality, the tactics we use

directly correspond to propositional and predicate logic inference rules.

25

P Q
∧ i, split

P ∧Q
P ∧Q

∧ e1, destruct
P

P ∧Q
∧ e2, destruct

Q

P ∨ i1, left
P ∨Q

Q
∨ i2, right

P ∨Q P ∨Q
P
X

Q
X

∨ e, destruct
X

P
Q

→ i, intro
P → Q

P P → Q
→ e, apply

Q

P (x0)
∀i, intro

∀x, P (x)

∀x, P (x)
∀e, spec

P (xmine)

P (xmine) ∃i, exists
∃x, P (x)

∃x, P (x)
∃e, destruct

P (x0)

The only proof automation technique we employ is the omega tactic, which

automatically resolves first-order Presburger arithmetic. We use omega primarily

to discharge trivial proof obligations involving comparison of natural numbers.

Our design choices entail that every formal proof can be rewritten into a proof

tree constructed from the above inference rules. Our motivation is to make the

formal proofs as illustrative as possible.

Towards these ends, we have also adopted standard programming best practices

in organizing the proof development by making use of modularity and Makefiles.

A comprehensive description of the organization and content of the proof scripts, as

well as how to build and install the development, can be found in Appendix A.

26

4 Our formalization

4.1 Coq standard library definitions

We first state the inductively-defined data types for natural numbers, lists and

sigma-types found in Coq’s standard library.

Inductive nat : Set := O : nat | S : nat → nat.

Inductive list (A : Type) : Type := nil : list A | cons : A → list A → list A.

Inductive sig (A : Type) (P : A → Prop) : Type :=

exist : ∀ x : A, P x → {x : A | P x}.

Coq’s sigma-types are defined via a basic type paired with a logical proposi-

tion guaranteeing all inhabitants of this new sigma-type satisfy some property P .

Elements of sigma-types are dependent pairs consisting of an x and the logical

proposition P x.

4.2 Our definitions

To begin with, we define alphabets as inductive types with a finite number of con-

structors. The alphabet is conventionally designed to be the set Σ = {0, 1, 2}, and

our definition follows suit.

Inductive T : Type :=

| aa : T

| bb : T

27

| cc : T.

We define words as lists of elements from the alphabet.

Definition word := list T.

Our definition of languages reflects the notion of some membership condition for

a set of words. We define languages as a type word→ Prop, which refers to a type

which takes some word and returns a proposition stating some property about that

word. Here, the property is that of being a member of the given language.

Definition language : Type := word → Prop.

One feature of Coq’s higher order type theory is the distinction between type

equality and propositional equivalence. Type equality is uniquely defined for each

inductively-defined data type, whereas propositional equivalence captures the notion

of provability. For example, two natural numbers are equal iff they are syntactically

equal by repeated application of their inductive constructors. Two propositions are

equivalent iff we can prove one from the other, and vice versa. While equality

is usually taken for granted in informal mathematical proofs, it is often a subtle

and contentious topic in type theory. In first-order logic, proofs as not treated

as first-class citizens, and therefore only uses the notion of type-based language

equality. We introduce into Coq’s base logic the axiom of functional extensionality

and propositional extensionality, which allows us to commute between type-based

equality and propositional equivalence for languages.

Axiom functional extensionality : ∀ X Y (f g : X → Y),

(∀ x : X, f x = g x) →

28

f = g.

Axiom prop ext : ∀ P Q : Prop, P ↔ Q → P = Q.

Language equality amounts to two languages having the same membership con-

dition for all words. We formulate language equality as follows:

Lemma language equality : ∀ l1 l2 : language,

l1 = l2 ↔ ∀ w : word, l1 w ↔ l2 w.

We define derivatives of a language both as a type and as a predicate. A deriva-

tive language of some language L with respect to some word label x is defined as:

Definition derivative of (L : language) (t : word) : language :=

fun w ⇒ L (t ++ w).

The property of being a derivative of some language L with respect to word label

x is defined as follows:

Definition is derivative (L L’ : language) : word → Prop :=

fun (x : word) ⇒ ∀ (w : word), L’ w ↔ L (x ++ w).

Defining block pumping and block cancellation properties requires the definition

of block pumping constants and word pumps. We choose to define the pumps in the

block pumping property using index-based breakpoints instead of subwords to allow

for clear reasoning via algebraic manipulation of inductively defined data types.

Therefore, we are required to define breakpoint sets and breakpoints.

Mathematically, breakpoints for a given word are an ordered, duplicate-free set

of indices of fixed size, where the indices refer to positions within the word, and can

29

fall on both the leftmost and rightmost end of the word. We represent breakpoints

as natural numbers, and breakpoint sets as lists of natural numbers. Lists are

inductively defined in Coq as a data type with zero arity and two constructors: nil

and cons. Primitive lists differ from and mathematical breakpoint sets in several

significant ways: lists are ordered, can contain duplicates, and do not place any

constraint on its elements besides requiring that they are of some type X.

Therefore, we leverage Coq’s sigma-types to define breakpoint sets by augment-

ing the list type with additional logical information. Breakpoint sets are thus

defined as a type list nat which depends on an argument k, the block pumping

constant, and satisfies the following properties:

1. The list is of length k;

2. All elements in the list are strictly increasing;

3. The last element in the list is less than or equal to the length of the word.

Definition breakpoint set predicate (l : list nat) (w : word) (p : block pumping constant)

: Prop :=

length l = p

∧ ∀ n m : nat,

n < m < (length l) →

nth n l d < nth m l d

∧ last l d ≤ length w.

Definition breakpoint set (p : block pumping constant) (w : word) : Type :=

30

{bl : list nat | breakpoint set predicate bl w p}.

Element j in the list directly corresponds to the j-th position in the list, which

then corresponds to the breakpoint between the j-th and (j+1)-th symbol in the

word. Therefore, element 0 refers to the breakpoint at the left-most end of the

word and element length w refers to the breakpoint at the right-most end of the

word, both of which are valid breakpoints. The former breakpoint is implicitly made

possible by breakpoints being of type nat, and the latter breakpoint is explicitly

made possible in the third conjunctive clause of the breakpoint set predicate.

We define block pumping constants, which are natural numbers greater than or

equal to 2, in a similar way, by augmenting Coq’s natural number data type with

a logical proposition guaranteeing that the number is greater than or equal to 2.

Definition p predicate (p : nat) : Prop :=

p ≥ 2.

Definition block pumping constant : Type :=

{ p : nat | p predicate p}.

We then define breakpoints as members of the breakpoint set. Therefore, the

breakpoint type depends on a set of breakpoints bps, a word w and a block pumping

constant k.

Definition breakpoint predicate (i : nat) (p : block pumping constant) (w :

word) (bl : breakpoint set p w) : Prop :=

In i (bl proj1 bl).

Definition breakpoint {p : block pumping constant} {word : list T} (bl : break-

31

point set p word) : Type :=

{i : nat | breakpoint predicate i p word bl}.

We choose for breakpoints to depend on breakpoint sets and not vice versa

because the statement of the block pumping property nests existential quantification

of individual breakpoints inside universal quantification of breakpoint sets.

Definition block pumpable matching (L : language) :=

∃ k : block pumping constant,

∀ w : word,

∀ bl : breakpoint set k w,

∃ i j : breakpoint bl,

i < j

∧ ∀ m : nat, L (firstn i w ++ napp m (pumpable block i j w) ++ skipn j w) ↔

L w.

Definition block cancellable matching (L : language) :=

∃ k : block pumping constant,

∀ w : word,

∀ bl : breakpoint set k w,

∃ i j : breakpoint bl,

i < j

∧ L (firstn i w ++ skipn j w) ↔ L w.

We postpone our definition of regularity for later discussion. For now, suffice

it to consider the representational obligations accompanying two standard ways of

32

defining regularity:

1. A language is regular iff all words in the language match some regular expres-

sion.

2. A language is regular iff all words in the language are accepted by some finite

automaton.

Both versions of regularity require us to define new inductive data types: regular

expressions, and finite automata. We refer the reader to Appendix B for the formal

definitions in Coq.

4.3 Ramsey’s Theorem

Proofs involving breakpoint sets make use of a foundational result in combinatorics,

Ramsey’s Theorem [ramsey]. Ramsey’s Theorem enjoys wide applications in var-

ious areas of mathematics and can be stated informally in several different ways.

Formally stating Ramsey’s Theorem to reason about block pumping properties fur-

ther requires attention to its 1) data types and 2) predicate logic quantifier nesting.

We start with the most general graph-based statement of Ramsey’s Theorem, fol-

lowed by a set-based version, and finally present the version we use which is specific

to breakpoint sets, and explicate how it is obtained from the original statement.

Theorem 4.1. Ramsey’s Theorem for graphs

One can always find monochromatic cliques in any edge-labeling with colors of a

sufficiently large complete graph.

33

Defining variable k to be the size of the monochromatic clique, variable r(k) to be

the size of the sufficiently large complete graph, and representing the vertices in the

graph as a set I, we can express the notion of edge-coloring with a coloring function

C of type vertex→ vertex→ color, which in turn corresponds to T → T → color,

where T refers to the type of the representative in the set of vertices. Further, we

define that C maps every single pair (i, j) in the set of vertices I, thus capturing

the notion of a complete graph – every two vertices are connected and colored.

Theorem 4.2. Ramsey’s Theorem for sets

For every natural number k and finite set Q of colors, there exists a natural number

r(k) such that for every ordered set I with r(k) elements and for every function

mapping each pair (i, j) to a color C(i, j), there exists a subset J ⊂ I with k elements

such that all pairs in J are mapped to the same color.

We first modify the data types in the set-based statement to be specific to the

data types that define block pumping. Breakpoint sets are ordered sets with the

additional properties that 1) they contain greater than or equal to two elements and

2) they are strictly increasing and their last element is less than the length of some

constant. The first property requires us to quantify over block pumping constants,

which are natural numbers that are greater than or equal to two, instead of ordinary

natural numbers, for k. Further, “colors” of pairs of breakpoints correspond to

“properties” of pairs of breakpoints, and therefore we set the type of our coloring

function to breakpoint→ breakpoint→ Prop.

The notion of colors implicitly requires that each color is distinct, and each edge,

or pair of elements, can only be assigned one unique color. When representing colors

34

in terms of decidable propositions, which must be either true or false, the number

of conjunctive propositions n gives rise to 2n different colors, corresponding to the

number of rows in the truth table, where each color has a unique truth assignment

for each proposition. In the two-color case, we have one property P and we assign

one color to be “P” and the other color “not P”. In the four-color case, we have two

properties P and P , and the four colors must strictly be “P and Q”, “P and not Q”,

“not P and Q”, and “not P and not Q”.

Expressing Ramsey’s Theorem in predicate logic further requires special atten-

tion to quantifier nesting. Firstly, Ramsey’s constant r(k) must directly depend

on constant k, therefore the first ∀ and the second ∃ are tightly bound. Secondly,

breakpoint sets depend on some word and a block pumping constant, therefore the

third ∀ and the fourth ∃ are tightly bound. Finally, the theorem quantifies over

all possible coloring functions, or in this case, all possible property-assignments to

pairs of breakpoints. Therefore, the fifth ∀ must precede the sixth ∃< because the

choice of property must not depend on the sublist of size k. Finally, the condition

that the two breakpoints are ordered must appear as an implicative antecedent in

the statement of the theorem itself, and not in the definition of the properties about

breakpoints.

This gets us the following block pumping-specific, formal statement of Ramsey’s

Theorem required in our proofs:

Axiom Theorem of Ramsey :

∀ (k : block pumping constant),

∃ rk : block pumping constant,

35

∀ w : word,

∀ bps : breakpoint set rk w,

∀ (P Q : nat → nat → Prop),

∃ bps’ : breakpoint set k w,

sublist bps’ bps ∧

((∀ bp1 bp2 : breakpoint bps’,

bp1 < bp2 → (P bp1 bp2) ∧ (Q bp1 bp2))

∨ (∀ bp1 bp2 : breakpoint bps’,

bp1 < bp2 → ¬ (P bp1 bp2) ∧ (Q bp1 bp2))

∨ (∀ bp1 bp2 : breakpoint bps’,

bp1 < bp2 → (P bp1 bp2) ∧ ¬ (Q bp1 bp2))

∨ (∀ bp1 bp2 : breakpoint bps’,

bp1 < bp2 → ¬ (P bp1 bp2) ∧ ¬ (Q bp1 bp2))).

4.4 Ehrenfeucht, Parikh and Rozenberg’s Theorem

EPR’s theorem states that the block pumping property, the block cancellation prop-

erty and regularity are equivalent. In other words, any language which satisfies one

of these three properties can also be shown to satisfy the other two.

EPR’s theorem breaks down into six directions, as illustrated in the figure below.

They prove the triangle commutes along directions (4), (5) and (6). Direction (5) is

trivial, because block cancellation is just a special case of block pumping for when

the pump is repeated 0 times, i.e. cancelled out. EPR’s proof of (4) informally

appeals to the pigeonhole principle. The proof of (6) is the most involved, and

36

receives detailed treatment in the section below.

In principle, showing either the clockwise or counterclockwise direction suffices.

In the interest of completeness and of demonstrating the compactness of our defini-

tion of regularity, we construct formal proofs of all six directions.

In the following section we give a sketch of the proof of (6) as given in [EPR]. We

then explicate three key ingredients in the mathematical argument made explicit by

constructing the formal proof. We point out an interesting phenomenon: the major

omission in the informal proof of (6) marks the point at which we require the axiom

of choice to be added to Coq’s base logic.

EPR breaks down the proof of their theorem into three lemmas.

Lemma 4.3. EPR’s Lemma 2

There are only finitely many languages that are block cancellable with k.

Lemma 4.4. EPR’s Lemma 3

If L is in Ck then so is Lσ for all σ in Σ.

37

Lemma 4.5. EPR’s Lemma 4

Let P be some property of languages such that (i) there are only finitely many lan-

guages that have P ; (ii) for all σ in Σ, if L has P then Lσ has P . Then P implies

regularity.

In this case, the property P is instantiated with the block cancellable property

for some k.

4.4.1 Lemma 2

EPR claims that it suffices to show that for any two languages that are block can-

cellable with k, if the two languages agree on word membership for all words up to

Ramsey’s constant r(k), then these two languages are equal.

The formal proof of Lemma 2 articulates the following three central ingredients:

1) the four-color version of Ramsey’s Theorem for pairs, 2) strong induction on word

length, and 3) a set-theoretic fact stating that every finite list is injectively mapped

onto from another finite list.

Ramsey’s Theorem for four colors EPR’s proof of Lemma 2 is completed with

Ramsey’s Theorem for two colors, with the first color being the property “is a break-

point for L1”, and the second color being the property “is not a breakpoint for L1”. It

then argues that the disjoint sets Z and Z ′ are the same for L1 and L2. In a formal,

constructive setting, the proof requires Ramsey’s Theorem for four colors. This is

because the breakpoints are extracted using existential quantifiers, and existential

elimination does not guarantee any additional properties about the arbitrary witness

38

it produces. EPR’s claim requires that for two identical propositions in predicate

logic, "for all breakpoint sets of size k, there exist breakpoints bp1 and bp2, such

that. . . ", if we eliminate the universal quantifier with a particular breakpoint set of

size k, then we can destruct the existential quantifiers to produce the exact same

two witnesses. This is plainly false. Consider the following statement:

“For every natural number n, there exists a natural number m such that m ≥ n.”

Suppose we eliminate the universal ∀ by supplying two identical statements with

the natural number 7. Our statement changes to:

“There exists a natural number m such that m ≥ 7.”

If we apply existential elimination to this statement, we are given a witness m0.

The only information we have about m0 is that it satisfies the greater than equal

to relation with regards to 7. There are an infinite number of possible m′0s, and

therefore we have no way of showing that the two m′0s extracted from these two

identical statements are the same one.

The four colors for Ramsey’s Theorem in the formal proof correspond to the prop-

erties “are breakpoints for both L1 and L2”, “are breakpoints for L1 but not L2”,

“are breakpoints for L2 but not L1”, and “are breakpoints for neither L1 nor L2”.

The first three cases are discharged in similar ways, and the final case is discharged

through contradiction.

Strong induction The proof of Lemma 2 argues that for any word w of arbitrary

length, one can shorten it to a word w′ which both L1 and L2 agree on the mem-

39

bership of. We perform case analysis on |w|, and trivially discharge the case where

|w| ≤ r(k) by assumption. In the case that |w| > r(k), we want to show that w can

be pumped down to a word w′ where |w| ≤ r(k), and then use the same reasoning

pattern as above. This cannot be shown directly using the fact that |w| > r(k), be-

cause removing a non-empty pump from a word arbitrarily longer than r(k) does not

necessarily result in a word that is shorter than r(k). Therefore, inductive reasoning

is required. The induction principle at work differs from the standard induction

principle that syntactically mirrors the inductive definition of natural numbers:

Theorem nat ind : ∀ P : nat → Prop,

P 0 →

(∀ n : nat, P n → P (S n)) →

∀ n : nat, P n.

This proof instead requires a stronger induction principle:

Theorem strong induction :

∀ P : nat → Prop,

P 0 →

(∀ n : nat, (∀ m, (m < n → P m)) → P n) →

(∀ n : nat, P n).

Strong induction is frequently used to reason about natural numbers, and we

omit the details of the proof of strong_induction1. Setting up strong induction

on word length in the proof of Lemma 2 requires some proof engineering:
1The complete proof can be found in stronginduction.v.

40

remember (length w) as n.

assert (H move := Nat.eq refl (length w)).

rewrite ← Heqn in H move at 2. clear Heqn.

generalize dependent w.

induction n as [|n IHn] using strong induction;

We first introduce a new variable length w into Coq’s context, which only

contains the variable w, for some arbitrary word. Next, we appeal to the reflexivity

of the ≤ relation to move the tautological proposition “n ≤ n” to the antecedent of

our goal. Finally, we perform strong induction on the second occurrence of n this

tautology, thus preserving the less than equal to relation between our word length

and the inductive variable. This generates the following inductive hypothesis in the

successor case, which gives that the conclusion holds for all word lengths up to |n|.

IHn : ∀ m : nat, m < n → ∀ w : word, length w = m → L1 w ↔ L2 w

Finite injectivity and the Curry-Howard correspondence EPR’s proof omits

the rest of the argument for the finiteness of block cancellable languages with k, and

directly obtains Lemma 2 from the fact that two block cancellable languages which

agree on words of shorter length are equal. We first complete the informal proof

with the following fact from set theory:

Theorem 4.6. If there exists an injective mapping from some finite, inhabited set

to an arbitrary set, then that set is finite.

Proof. Let L1, L2 be two languages which satisfy the block cancellation property

for constant k. Let L′1, L′2 be the subset of L1 and L2 containing only words shorter

41

than length Ramsey’s constant for k, or r(k). By EPR’s claim from Lemma 2,

two block cancellable languages which agree on words of shorter length are equal,

therefore L1 and L2 are the same language, and the mapping from a block cancellable

language with constant k to a language containing only words shorter than r(k) is an

injection. Because the set of languages containing words shorter than any constant

r(k) is finite with cardinality 2|Σ|
r(k) , and the mapping from the set of languages block

cancellable with k to this set is an injection, by Theorem 4.6 the set of languages

block cancellable with k is finite.

Completing the formal proof turns on the following theorem:

Theorem inj finite {X Y : Type} :

∀ (P : X → Prop) (Q : Y → Prop) (f : {x | P x} → {y | Q y}),

inhabited {x | P x} →

injective P Q f →

is finite dep Q →

is finite dep P.

The predicates inhabited and injective are defined in the standard way. We

again leverage the expressive power of Coq’s dependently-typed lambda calculus

to capture the notion of mathematical sets using sigma-types: we define sets as

list types paired with some property P that implicitly defines the set membership

condition. Our injective function from set to set is then expressed as a function from

sigma-typed list to sigma-typed list. Notably, proving inj finite requires adding the

axiom of functional choice into Coq’s base logic:

42

Definition FunctionalChoice : Type → Type → Prop :=

fun A B : Type ⇒

∀ R : A → B → Prop,

(∀ x : A, ∃ y : B, R x y) →

∃ f : A → B, ∀ x : A, R x (f x).

Functional choice is used to obtain the inverse function of our injective function,

in order to construct a list of elements satisfying P from a list of elements satisfying

Q, given an injection.

We leverage the intrinsic finiteness guarantee of inductive lists to define the

property of finiteness as follows:

Definition is finite {X : Type} (P : X → Prop) : Prop :=

∃ L : list X, ∀ (x : X), In x L ↔ P x.

In other words, a set with membership condition P is finite iff we can explicitly

construct a list such that all elements of the generic type that satisfy P , and all

members of the list satisfy P . However, this notion of finiteness does not suffice for

our finite injectivity theorem. The type of our witness list is of generic X rather than

sigma-type X, whereas the type of our injective function is from sigma-type to sigma-

type. Our finite injectivity theorem instead requires the following dependently-typed

version of finiteness:

Definition is finite dep {X : Type} (P : X → Prop) : Prop :=

∃ L : list {x | P x}, ∀ (dep x : {x | P x}), In dep x L.

This commits us to proving the equivalence between these two notions of finite-

43

ness. While the two definitions sound identical articulated in natural language, the

fundamental difference between them lies in where the propositional information

capturing set membership is contained: in the dependent version, that x satisfies

P is contained at the level of Type, whereas in the non-dependent version, that

x satisfies P is contained at the level of Prop. The proof of equivalence elegantly

showcases the Curry-Howard correspondence between proofs and programs, which

allows for logical propositions to act as function arguments.

Theorem is finite equiv : ∀ {X : Type} (P : X → Prop),

(∃ L : list {x | P x}, ∀ (dep x : {x | P x}), In dep x L)

↔ (∃ L : list X, ∀ (x : X), In x L ↔ P x).

The proof of the left direction requires us to, given a list of dependent pairs of

x and P x, construct a list of x’es that uniquely satisfy P . The list construction is

trivially completed by mapping a projection of the first element of the dependent

pair onto the list of dependent pairs:

∃ (map (fun x ⇒ proj1 sig x) L).

The following lemma completes the proof of the left direction:

Lemma inj in map iff :

∀ {X : Type} (P : X → Prop) (f : {x | P x} → X) (L : list {x | P x})

(x : {x | P x}),

In (proj1 sig x) (map (fun x ⇒ proj1 sig x) L) ↔ In x L.

The proof of the right direction comprises one of the most technically challenging

endeavors in our work. It requires us to, given a list of generic x’es, construct a list

44

of dependent pairs of x and P x. We provide an intuition for the difficulty in doing

so through a comparison with the following function:

Definition build dep impl :

∀ {X : Type}

(x : X)

(P Q : X → Prop)

(H : ∀ x, P x ↔ Q x)

(H P : ∀ x : X, P x), {x | Q x}.

intros; spec H x ; apply H in H P ; refine (exist Q x H P).

Defined.

Fixpoint build dep impl list

{X : Type}

(P Q : X → Prop)

(l : list {x : X | P x})

(H : ∀ x, P x ↔ Q x) : list {x : X | Q x} :=

match l with

| [] ⇒ []

| hd :: tl ⇒ (build dep impl P Q hd H) :: build dep impl list P Q tl H

end.

The function above takes a list of dependent pairs of x’es that satisfy P , along-

side a logical proposition H which states that all x’es satisfying P satisfy Q, and

constructs a list of dependent pairs of x’es that satisfy Q. This amounts to recur-

sively traversing l, and at each head element which is a dependent pair consisting of

45

x and logical proposition P x, destructing it to obtain x, then using x to appeal to

H to obtain Q x, and finally pairing x and Q x together to make a new dependent

pair which is then appended onto the return list.

In the above example, P and Q are predicates of type X → Prop whose truth

values are universally guaranteed by H. For the proof of the right direction of our

equivalence, P corresponds to the property of being in some list, and Q corresponds

to the property characterizing the finite set we want to construct. However, the list

we have to work with is not a list of dependent pairs, but rather a list of generic

x’es. The first challenge consists of not being able to directly obtain the proposition

to pass to H as an implicative antecedent, as in the example above. The second

challenge consists in the fact that the proposition we need to obtain is self-referential:

each x can only “know” that it is in the list it is in when it is being matched as the

head of the list:

Definition in eq :=

fun (A : Type) (a : A) (l : list A) ⇒

or introl eq refl : ∀ (A : Type) (a : A) (l : list A), In a (a :: l).

Therefore, heavy modifications must be made to the function above in order

to construct our desired witness list. The function which accomplishes this is as

follows:

Fixpoint build dep impl list {X : Type} (P : X → Prop) (L: list X)

(Hfin : ∀ x, In x L → P x) : list {x | P x} :=

match L as l return (l = L → list {x | P x}) with

46

| nil ⇒ fun ⇒ nil

| hd :: tl ⇒ fun h ⇒ cons (eq rect (hd :: tl)

(fun Hfin0 : ∀ x, In x (hd :: tl) → P x ⇒

exist hd (Hfin0 hd (in eq hd tl)))

L h Hfin)

(build dep impl list P tl (rest fin P L hd tl Hfin h))

end (eq refl L).

The function uses dependent return types to include an additional argument

which “remembers” that the current head of the list is indeed a member of the list

by applying in eq above. It then passes the proposition obtained from in eq along

to Hfin in order to obtain P x, where x is the current head of the list. Finally, it

pairs x and P x together to construct a list of dependent pairs.

The above equivalence allows us to construct the following building blocks for

our inj finite theorem:

P is the property of being block cancellable with some constant k:

Definition bc sigma (k : block pumping constant) : language → Prop :=

fun L : language ⇒

∀ (s : list T),

∀ (bl : breakpoint set k s),

∃ (i j : breakpoint bl),

i < j ∧ (L (firstn i s ++ skipn j s) ↔ (L s)).

47

Definition bc language (k : block pumping constant) : Type :=

{ l | bc sigma k l}.

We then prove that there always exists some language that is block cancellable

with k:

Lemma inhabited bc : ∀ k : block pumping constant, inhabited (bc language k).

Q is the property of only containing words shorter than some constant n.

Definition is short lang (n : nat) (L: language) : Prop :=

∀ w : word, L w → length w ≤ n.

Definition short lang (n : nat) : Type :=

{ l | is short lang n l}.

We then constructively prove that short languages are finite:

Lemma is finite sheared : ∀ n : nat,

is finite (is short lang n).

Lemma is finite sheared dep : ∀ n : nat,

is finite dep (is short lang n).

Finally, we supply the above lemmas to inj finite to obtain that the class of

languages block cancellable with k is finite:

Theorem bc k is finite dep :

∀ k : block pumping constant, is finite dep (bc sigma k).

Theorem bc k is finite :

∀ k : block pumping constant, is finite (bc sigma k).

48

4.4.2 Lemma 3

The next step to showing that the block cancellation property implies regularity

consists of the proof that all derivatives of block cancellable languages are also

block cancellable. EPR’s proof [EPR] for this lemma is brief:

Proof. Suppose that z ∈ Σ? and z = wy1 . . . ykw
′. Consider σz = w′

′
yz . . . ykw

′

where w′′ = σw. Then, since L ∈ Ck, there exist m, j, 1 ≤ m ≤ j ≤ k such that:

w′′y1 . . . ymyj+1 . . . ykw
′ ∈ L iff σz ∈ L.

But then,

wy1 . . . ymyj+1 . . . ykw
′ ∈ Lσ iff σz ∈ Lσ.

Hence Lσ is also in Ck.

The informal reasoning elides many proof obligations that are explicitly required

in the formal proof, including:

• Case distinction on whether z is the empty word ε;

• Case distinction on whether the derivative word label d is ε, in which case Ld

and L are the same language;

• The proof that any set of breakpoints for a longer word is also a set of break-

points for a shorter word.

Coq’s constructive type theory requires us to explicitly construct a set of breakpoints

for a word in Lx from a set of breakpoints for a word in L. In this case, given an

arbitrary set of breakpoints for a word w in L, we increment each breakpoint in the

49

set by |x|, where x is the label of the derivative language. Our dependently-typed

definition of breakpoint sets requires us to show that the breakpoint set predicate

is preserved for w′ in Lx from the breakpoint set predicate for w in L. One key

proof engineering takeaway from working extensively with dependent types in Coq

is that we must take care not to lose information in the process of destruction and

reconstruction. In the case of this proof, when we map the plus n operation to a list

of natural numbers, the list of natural numbers we obtain is uniformly greater than

n. However, this information is not contained in the data type list nat, which

only tells us that its elements are greater than or equal to 0.

4.4.3 Lemma 4

Up to this point, we have two central results about classes of block cancellable

languages: that they are finite, and that they are closed under derivative. The final

step to showing that the block cancellation property implies regularity consists of

Lemma 4, which quantifies over properties of languages.

Lemma 4.7. Lemma 4

Let P be some property of languages such that (i) there are only finitely many lan-

guages that have P ; (ii) for all σ in Σ, if L has P then Lσ has P . Then P implies

regularity.

An analysis of the explanatory role of each of the components in Lemma 4 render

the following conclusions:

1. The role of the property P is to leverage its finitehood to supply a finite set of

50

states for the automaton;

2. The role of preservation over derivatives is to construct the transition relation

and the acceptance condition;

3. L0 supplies the start state, representing some arbitrary language that has

property P ;

4. The final automaton can be shown to recognize all words belonging to regular

languages, and by construction recognizes all words satisfying property P.

We perform a similar analysis on EPR’s argument that regular languages satisfy the

block pumping property, which is informally and briefly given by appealing to the

pigeonhole principle. We obtain the following conclusions:

1. The pigeonhole principle compares the length of the word and the number of

automaton states, implicitly, the number of breakpoints;

2. Final states and start states can be considered as regular states with a special

state label;

We combine the insights from the conclusions above to formulate the following notion

of regularity:

Definition equiv classes pred (ls : list language) :=

∀ L, In L ls → ∀ w, In (derivative of L w) ls.

Definition equiv classes : Type :=

{ls : list language | equiv classes pred ls}.

51

Definition lang class (LS : equiv classes) : Type :=

{ l : language | In l (equiv classes proj1 LS)}.

Definition regular (L : language) : Prop :=

∃ LS : equiv classes, In L LS.

We define equivalence classes of languages as finite lists that are closed under

language derivative. We then define a language to be regular iff it belongs to an

equivalence class of languages that is closed under derivative. We verify the correct-

ness of our definition by proving that it obeys the same notion of acceptance as an

automata-based definition.

We then use our definition of regularity to complete the equivalence between the

block cancellation property and regularity. The proof illustrates how our character-

ization of regularity screens off the representational redundancy in the definition of

a finite automaton.

Proof. Because L is regular, there exists a list of languages LS that is closed under

derivative, meaning that for every language in the list, all of its derivatives are also

in the list. We supply the length of LS to be the pumping constant k. We then

introduce an arbitrary word w, and do case distinction on the length of the word.

In the case that w is shorter than k, then it is trivially block pumpable, because one

cannot insert k + 1 breakpoints into a word that is shorter than k. In the case that

the word is longer than k, we obtain an arbitrary set of breakpoints of size k + 1.

Because breakpoints correspond to positions within the word, we can obtain a list of

prefixes of w corresponding to mapping the first n symbols in the word to the list of

52

breakpoints. By the definition of derivative languages, each prefix w′ is recognized

by some derivative Lw′ with respect to L. Therefore, there are a total of k + 1

derivatives of L which recognize k+ 1 prefixes. Further, we know that each of these

derivatives occur in the finite list of equivalence classes which defines the property

of regularity for L – this information is carried in the dependent type signature of

LS. However, because the length of the finite number of derivatives is k, by the

pigeonhole principle we know that there must exist two derivatives which are the

same. We can destruct the existential witnesses for the indices of two breakpoints

which mark two prefixes recognized by the same derivative. We then pass these

indices to the two breakpoint existentials. Finally, the proof is completed by the

application simple algebraic properties of derivatives.

A further advantage of this notion of regularity is that it naturally gives rise to an

easy proof that regularity implies block pumpability. The reasoning process is very

similar, and the central idea is that it reduces state repetition and the pigeonhole

principle over states to simple algebraic manipulation of language derivatives. The

manipulation of derivatives in the argument relies only on the following four facts

about derivatives:

Lemma chomp deriv : ∀ (w : word) (L : language),

L w = (derivative of L w) [].

Lemma cat deriv : ∀ (x y w : word) (L : language),

(derivative of (derivative of L x) y) w = (derivative of L (x ++ y)) w.

Lemma cat cat deriv : ∀ (x y z w : word) (L : language),

53

(derivative of (derivative of L x) (y ++ z)) w =

(derivative of (derivative of L (x ++ y)) z) w.

We further press our definition for concision by using it to complete the proof

triangle, in particular, to prove that regular languages are block pumpable.

This section has shown how an alternative formulation of regularity has allowed

us to avoid the costly representational overhead of defining finte automata, and

make the proof by pigeonhole principle more direct and elegant. To the best of

our knowledge, our definition is novel in its utilization of the notion of finiteness in

defining regularity. It also showcases well the benefits of working in a formal proof

environment: being forced to think like a representational minimalist also forces one

to refine their definitions and arguments until they admit no further interrogation.

4.5 Closure properties

The proofs of closure properties for block pumpable languages under intersection,

union and concatenation fall upon constructing suitable witnesses for the block

pumping constant, and suitable witnesses for the two breakpoints. The former relies

on Ramsey’s Theorem, and the latter relies on arguing that the breakpoint sets of

two languages L and H can be used to construct a breakpoint set for L∩H, L∪H

and L ·H respectively. We follow the proofs of closure properties in [chak], which

are generally free from significant proof omissions. The proof engineering required to

construct the formal proofs are similar to what has been described above. Therefore,

in the interest of brevity, we omit detailed descriptions of these formal proofs and

instead refer the reader to closure.v of the Coq development.

54

5 Discussion

Our initial point of departure for formally investigating block pumpable language

theory stemmed from a broader curiosity about whether properties that are true

of some mathematical object are provable on all possible representations of that

object. In particular, we wondered whether a proof that regular languages satisfy

the positive block pumping property which proceeds on direct induction over regular

expressions was possible. We have yet to find an affirmative answer to this question,

as it seems like we must go from regular expressions to finite automata via Kleene’s

theorem, and then argue using the pigeonhole principle on the number of states in

the finite automaton, in order to complete the proof.

Another point of interest which arose throughout the course of our formalization

effort concerns the constructive vs. classical divide in formalizing mathematics. In

our development, we used classical axioms as a natural way to formalize set theory.

However, we wonder whether the axiom of choice is strictly necessary for the specific

purpose of completing the proof of block cancellable to regular. At initial glance,

forgoing the axiom of choice entails coming up with a terminating algorithm that

computes a block cancellable language from a language that contains only short

strings.

Finally, our extensive engagement with Coq’s dependent types gives rise to the

following question: how can one formally characterize the expressive power of de-

pendent types in Coq’s metalogic? Our usage of dependent types is restricted to

sigma-types, which consist of an element and a Prop. If we assume that all of our

55

propositions are decidable, is carrying the propositional information inside Type

provably equivalent to carrying the propositional information inside Prop, in the

form of an implicative antecedent? How does the picture change when we expand our

consideration to dependent types which consist of an element and a Type instead

of Prop?

In addition to investigating the questions listed in the section above, we plan to

further our development by including formal results of Jaffe [jaffe] and Varricchio’s

[varricchio] necessary and sufficient pumping conditions for regularity.

56

6 Conclusion

We present the first known formalization of results from automata theory about lan-

guages orthogonal to the Chomsky hierarchy. In constructing formal proofs of the

equivalence between the block pumping property, the block cancellation property

and regularity, as well as closure properties of positively block pumpable languages,

we make use of various features of Coq’s higher-order, dependently-typed lambda

calculus to define mathematical objects and reason classically about sets. Our pro-

cess instances an interesting contravariance between the concerns of informal and

formal mathematical proofs: the bulk of the informal reasoning can be reduced to al-

gebraic manipulation of inductively defined data structures that safely reside within

the Calculus of Inductive Constructions; precisely where the informal proof ends

does the formal proof take off, eliciting a departure from constructive type theory

to the realm of classical logic.

57

7 References

58

A Coq project file organization

The Coq development consists of the following files, and can be found at https://github.com/rooibosriot/blockpumpable.

• stronginduction.v contains a proof of the strong induction principle from

the inductive definition of natural numbers and its standard induction princi-

ple;

• finite.v contains a formal theory of finite sets in two flavors, regular and

dependent types, including the foundational result that finite sets map injec-

tively onto finite sets, and a proof of equivalence between the two versions of

finiteness;

• lib.v contains a large collection of helper lemmas which supplement Nat

and List in Coq’s standard library;

• definitions.v includes all of the inductively defined data types required

of block pumpable language theory, and basic facts about derivatives;

• blockpump.v contains a library of lemmas about breakpoint sets, and the

proof of EPR’s Lemma 2 and Lemma 3;

• regular.v contains our alternative characterization of regularity, and the

proof from regular to block cancellable, regular to block pumpable, and regular

to block cancellable;

• sixwayinn.v contains all six proof arrows in the commutative triangle be-

tween regularity, block pumpablity and block cancellability

59

https://github.com/rooibosriot/blockpumpable

• dfa.v contains obsolete definitions of deterministic finite automata;

• closure.v contains proofs of the closure properties of block pumpable lan-

guages under intersection, union and concatenation.

60

B Additional definitions

Regular expressions are inductively defined as follows 1:

Inductive reg exp : Type :=

| EmptySet : reg exp

| EmptyStr : reg exp

| Char : T → reg exp

| App : reg exp → reg exp → reg exp

| Union : reg exp → reg exp → reg exp

| Star : reg exp → reg exp .

The matching relation between regular expressions and words is defined induc-

tively as follows:

Inductive exp match : word → reg exp → Prop :=

| MEmpty : exp match [] EmptyStr

| MChar : ∀ x, exp match [x] (Char x)

| MApp : ∀ s1 re1 s2 re2,

exp match s1 re1 →

exp match s2 re2 →

exp match (s1 ++ s2) (App re1 re2)

| MUnionL : ∀ s1 re1 re2,

exp match s1 re1 →
1The definition of regular expressions is taken from chapter IndProp.v of Benjamin Pierce et

al.’s textbook Software Foundations [sf].

61

exp match s1 (Union re1 re2)

| MUnionR : ∀ re1 s2 re2,

exp match s2 re2 →

exp match s2 (Union re1 re2)

| MStar0 : ∀ re, exp match [] (Star re)

| MStarApp : ∀ s1 s2 re,

exp match s1 re →

exp match s2 (Star re) →

exp match (s1 ++ s2) (Star re).

Coq automatically equips all inductive types with an induction principle. The

induction principle for regular expression matching is as follows:

Definition exp match ind :=

∀ P : word → reg exp → Prop,

P [] EmptyStr →

(∀ x : T, P [x] (Char x)) →

(∀ (s1 : word) (re1 : reg exp) (s2 : word) (re2 : reg exp),

s1 =˜ re1 → P s1 re1 → s2 =˜ re2 → P s2 re2 → P (s1 ++ s2) (App

re1 re2)) →

(∀ (s1 : word) (re1 re2 : reg exp),

s1 =˜ re1 → P s1 re1 → P s1 (Union re1 re2)) →

(∀ (re1 : reg exp) (s2 : word) (re2 : reg exp),

s2 =˜ re2 → P s2 re2 → P s2 (Union re1 re2)) →

(∀ re : reg exp, P [] (Star re)) →

62

(∀ (s1 s2 : word) (re : reg exp),

s1 =˜ re →

P s1 re → s2 =˜ Star re → P s2 (Star re) → P (s1 ++ s2) (Star re))

→

∀ (w : word) (r : reg exp), w =˜ r → P w r.

Deterministic finite automata are defined as follows:

Definition run (s : dfa states) : Type := list (state s × T).

Record dfa : Type :=

DFA { set: dfa states ;

s0 : state set;

f : transition set }.

Definition accepting’ (w : word) (dfa : dfa) :=

∃ r : run (set dfa),

w = (map snd r) ++ [epsilon]

∧ hd bogus (map fst r) = (s0 dfa)

∧ (∀ i : nat, 0 ≤ i < length w - 1 →

((f dfa) (nth i (map fst r) bogus)

(nth i (map snd r) epsilon)

(nth (S i) (map fst r) bogus)))

∧ state proj1 snd (fst (last r (bogus,epsilon))) = true.

63

	Overview
	Formal language theory
	Introduction
	An example
	Pumping properties
	Mr. Pumping Lemma

	Formalizing automata theory
	On an issue of representation
	Existing work
	Motivations
	Principles

	Our formalization
	Coq standard library definitions
	Our definitions
	Ramsey's Theorem
	Ehrenfeucht, Parikh and Rozenberg's Theorem
	Lemma 2
	Lemma 3
	Lemma 4

	Closure properties

	Discussion
	Conclusion
	References
	Coq project file organization
	Additional definitions

