Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Conclusion

A formalization of block pumpable language theory in Coq

Elaine Li

Yale-NUS College Advised by Aquinas Hobor, Frank Stephan

Wednesday, 3rd April 2019

Roadmap

- 1. Motivation
- 2. Background
 - Formal languages
 - Regular languages and their properties
- 3. A proof nugget
 - Informal proof
 - Formal proof
 - Proof in numbers
- 4. Conclusion

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof

Formal proof

Picture view By the numbers

Motivation

An observation:

- Formal languages are mathematical objects that enjoy a diversity of representations.
- Representations are costly in formal, mechanized proofs.

Goal: a illustrative, self-contained formalization of results related to block pumping in Coq that includes:

 Closure properties of positively block pumpable languages under union, intersection and concatenation.

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Formal languages: an overview

1. Definition: a set of **strings** over an **alphabet** with a **mechanism to decide membership**

- alphabet Σ: a finite set of symbols e.g. [a-z], {0,1,2}
- string/word: concatenation of symbols e.g. "meringue", 00101
- mechanisms to decide membership:
 - via checking, i.e. abstract machines
 - via generating, i.e. derivation rules
- 2. Applications: compiler design, formal linguistics, text processing, model checking etc.

Elaine Li

Motivation

Introduction

Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Regular languages: a class of formal languages

Block Pumping

Elaine Li

Motivation

ntroduction

Formal languages Pumping properties The block pumping property

A proof nugget

Formal proof

Picture view

By the numbers

Conclusion

Regular languages are a class of formal languages recognizable by **finite automata**.

Regular languages: a class of formal languages

Block Pumping

Elaine Li

Motivation

ntroduction

Formal languages Pumping properties The block pumping property

A proof nugget

Formal proof

Picture view

By the number

Conclusion

A language is regular iff there exists a **finite automaton** that accepts all words in the language, and rejects all words not in the language.

An example $\begin{array}{l} \mbox{Let } \Sigma = \{0,1\} \mbox{ and } \\ \mbox{L} = \{w: w \mbox{ is of odd length and ends in }1\}. \end{array}$

w₁ = 10 w₂ = 00101

Block Pumping

Elaine Li

Motivation

ntroduction

Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

An example $\begin{array}{l} \mbox{Let } \Sigma = \{0,1\} \mbox{ and } \\ \mbox{L} = \{w: \ w \mbox{ is of odd length and ends in }1\}. \end{array}$

 $w_2 = 00101$ $w_3 = 001$ $w_4 = 00101010101$

Block Pumping

Elaine Li

Motivation

ntroduction

Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Regular languages: pumping properties

Regular languages admit pumping properties.

Block Pumping

Elaine Li

Motivation

Introduction

Formal languages

Pumping properties The block pumping property

A proof nugget Informal proof Formal proof

Picture view

By the numbers

Regular languages: pumping properties

Do pumping properties characterize regular languages?

Block Pumping

Elaine Li

Motivation

Introduction

Formal languages

Pumping properties The block pumping property

A proof nugget

Distance siles

By the numbers

The quest to find a necessary and sufficient pumping condition

Ehrenfeucht, Parikh and Rozenberg (1981)

The block pumping property

 $L \subseteq \Sigma^*$ has the block pumping property iff there exists a k such that for all $w \in \Sigma^*$ and all ways of inserting k breakpoints into the word, there exist two breakpoints such that the word part in between them can be *repeated* or *omitted* without affecting word membership.

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property A proof nugget

Informal proof Formal proof Picture view

Mr. Pumping Lemma

Given a language $L \subseteq \Sigma^*$,

- 1. You pick a pumping constant k.
- 2. Mr. Pumping Lemma picks a word w, and a set of breakpoints bps of size k.
- 3. You pick two breakpoints *bp*₁, *bp*₂ from the breakpoint set *bps*.
- Mr. Pumping Lemma pumps the word part between bp₁ and bp₂ any number of times.

If the membership of the resulting word w' remains the same as the membership of the original word w in L, then you win. Otherwise, Mr. Pumping Lemma wins.

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property A proof nugget

Informal proof Formal proof Picture view By the numbers

EPR's Theorem

Theorem of Ehrenfeucht, Parikh and Rozenberg

Regularity, the block pumping property, and the block cancellation property are equivalent.

Block Pumping

Elaine Li

Motivation

Introduction

Formal languages

Pumping propertie

The block pumping property

A proof nugget Informal proof

Formal proof

Picture view

By the numbers

EPR's Theorem

Block Pumping

Elaine Li

Motivation

Introduction

Pumping propertie

The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

EPR's proof, in pictures

Block Pumping

Elaine Li

EPR's proof, in pictures

Lemma 2

There are finitely many languages that BC(k).

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget

Informal proof

Formal proof

Picture view

By the numbers

EPR's proof, in pictures

Lemma 2

There are finitely many languages that BC(k).

Claim

If BC(k, L) and BC(k, L'), and L, L' agree on all words shorter than r(k), then L = L'.

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping propert

A proof nugget

Informal proof

Formal proof

Picture view

By the numbers

Formal proof, in pictures

Finite injectivity

If there exists an injection from an arbitrary onto a finite set, that set must be finite.

Short languages are finite

The set of languages only containing words shorter than r(k) is finite.

Injectivity

The mapping from the set of languages that BC(k) to the set of languages containing only words shorter than r(k) is injective.

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof

By the numbers

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Finite injectivity, in Coq

Theorem (Finite injectivity)

where:

- X language
- ▶ P property of being block cancellable with k
- Q property of only containing words shorter than r(k)
- ▶ f mapping from BC(k) languages to short languages

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Finiteness, in Coq

Definition (Dependent finite)

Definition (Finite)

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping propert

A proof nugget Informal proof Formal proof Picture view By the numbers

A comparison

Block Pi	umping
----------	--------

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget

Pormai prooi

By the numbers

Conclusion

	EPR proof	Coq proof
Definitions	22	400
Lemma 2	26	800
Lemma 3	5	160
Lemma 4	14	20

lib.v 1000
finite.v 400
triangle.v 1000
closure.v 650

Conclusion

Introduct

One question: how to characterize the expressive power of dependent types in Coq's type theory? One takeaway: automata theory through the lens of functional manipulation of inductive data types

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Formal definitions : Injective

Definition (Injective)

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Two views of propositional information

"All numbers greater than 2 are greater than 1." On the set-theoretic view:

- 1. For all $n \in \mathbb{N}$, if n > 2 then n > 1.
- 2. For all $n \in \{n : n > 2\}$, n > 1.

On the type-theoretic view:

1.
$$\forall$$
 n : nat, n > 2 \rightarrow n > 1.

2. $\forall n : \{n : nat \mid n > 2\}, n > 1.$

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Dependent types in Coq

Dependent types are types that **carry propositional information**.

```
Definition (Dependent types)
```

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Ramsey's Theorem

For all $k \in \mathbb{N}$ and finite set Q of colors, there exists an $r(k) \in \mathbb{N}$ such that for every ordered set I of size r(k) and every coloring function C mapping ordered pairs $i, j \in I$ to a color $C(i,j) \in Q$, there exists a monochromatic subset of I of size k.

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping propert

A proof nugget Informal proof Formal proof Picture view By the numbers

EPR's Proof

To prove:

Lemma 2

There are only finitely many languages block cancellable with k.

it is sufficient to show that:

Claim

If L, L' are block cancellable with k and for all strings x with |x| < r(k), $x \in L$ iff $x \in L'$, then L = L'.

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view By the numbers

Formal definitions: dependent finiteness

```
Fixpoint build_dep_impl_list' {X: Type} (P: X \rightarrow \mathbb{P}) (L: list X)

(Hfin: \forall x, \text{ In } x \perp \rightarrow P x): list {x | P x} :=

match L as l return (l = L \rightarrow list {x | P x}) with

| nl \Rightarrow \lambda_{-} \Rightarrow nll

| hd :: tl \Rightarrow

\lambda h \Rightarrow \text{cons} (\text{eq_rect} (\text{hd :: tl})_{-} (\lambda \text{ Hfing} : \forall x, \text{ In } x (\text{hd :: tl}) \rightarrow P x \Rightarrow

\text{exist } \text{hd} (\text{Hfing hd} (\text{in_eq hd tl})) \ L h \text{ Hfin})

(build_dep_impl_list' P tl (rest_fin P L hd tl Hfin h))

end (eq_refl L).
```

Block Pumping

Elaine Li

Motivation

Introduction Formal languages Pumping properties The block pumping property

A proof nugget Informal proof Formal proof Picture view