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Abstract. Multiparty session types (MSTs) are a type-based approach
to verifying communication protocols. Central to MSTs is a projection
operator : a partial function that maps protocols represented as global
types to correct-by-construction implementations for each participant,
represented as a communicating state machine. Existing projection op-
erators are syntactic in nature, and trade efficiency for completeness. We
present the first projection operator that is sound, complete, and efficient.
Our projection separates synthesis from checking implementability. For
synthesis, we use a simple automata-theoretic construction; for checking
implementability, we present succinct conditions that summarize insights
into the property of implementability. We use these conditions to show
that MST implementability is PSPACE-complete. This improves upon
a previous decision procedure that is in EXPSPACE and applies to a
smaller class of MSTs. We demonstrate the effectiveness of our approach
using a prototype implementation, which handles global types not sup-
ported by previous work without sacrificing performance.

Keywords: Protocol verification · Multiparty session types · Commu-
nicating state machines · Protocol fidelity · Deadlock freedom.

1 Introduction

Communication protocols are key components in many safety and operation crit-
ical systems, making them prime targets for formal verification. Unfortunately,
most verification problems for such protocols (e.g. deadlock freedom) are unde-
cidable [11]. To make verification computationally tractable, several restrictions
have been proposed [2, 3, 10, 14, 33, 42]. In particular, multiparty session types
(MSTs) [24] have garnered a lot of attention in recent years (see, e.g., the sur-
vey by Ancona et al. [6]). In the MST setting, a protocol is specified as a global
type, which describes the desired interactions of all roles involved in the protocol.
Local implementations describe behaviors for each individual role. The imple-
mentability problem for a global type asks whether there exists a collection of

∗equal contribution
†corresponding author

ar
X

iv
:2

30
5.

17
07

9v
2 

 [
cs

.F
L

] 
 1

8 
Ju

l 2
02

3

https://doi.org/10.5281/zenodo.7878493
https://orcid.org/0000-0003-0173-4498
https://orcid.org/0000-0003-3638-4096
https://orcid.org/0000-0003-4051-5968
https://orcid.org/0000-0002-3197-8736


2 E. Li, F. Stutz, T. Wies, D. Zufferey

local implementations whose composite behavior when viewed as a communicat-
ing state machine (CSM) matches that of the global type and is deadlock-free.
The synthesis problem is to compute such an implementation from an imple-
mentable global type.

MST-based approaches typically solve synthesis and implementability simul-
taneously via an efficient syntactic projection operator [18,24,34,41]. Abstractly,
a projection operator is a partial map from global types to collections of imple-
mentations. A projection operator proj is sound when every global type G in its
domain is implemented by proj(G), and complete when every implementable
global type is in its domain. Existing practical projection operators for MSTs are
all incomplete (or unsound). Recently, the implementability problem was shown
to be decidable for a class of MSTs via a reduction to safe realizability of glob-
ally cooperative high-level message sequence charts (HMSCs) [38]. In principle,
this result yields a complete and sound projection operator for the considered
class. However, this operator would not be practical. In particular, the proposed
implementability check is in EXPSPACE.

Contributions. In this paper, we present the first practical sound and complete
projection operator for general MSTs. The synthesis problem for implementable
global types is conceptually easy [38] – the challenge lies in determining whether
a global type is implementable. We thus separate synthesis from checking imple-
mentability. We first use a standard automata-theoretic construction to obtain
a candidate implementation for a potentially non-implementable global type.
However, unlike [38], we then verify the correctness of this implementation di-
rectly using efficiently checkable conditions derived from the global type. When
a global type is not implementable, our constructive completeness proof provides
a counterexample trace.

The resulting projection operator yields a PSPACE decision procedure for
implementability. In fact, we show that the implementability problem is PSPACE-
complete. These results both generalize and tighten the decidability and com-
plexity results obtained in [38].

We evaluate a prototype of our projection algorithm on benchmarks taken
from the literature. Our prototype benefits from both the efficiency of existing
lightweight but incomplete syntactic projection operators [18,24,34,41], and the
generality of heavyweight automata-based model checking techniques [28,36]: it
handles protocols rejected by previous practical approaches while preserving the
efficiency that makes MST-based techniques so attractive.

2 Motivation and Overview

Incompleteness of existing projection operators. A key limitation of exist-
ing projection operators is that the implementation for each role is obtained via
a linear traversal of the global type, and thus shares its structure. The following
example, which is not projectable by any existing approach, demonstrates how
enforcing structural similarity can lead to incompleteness.
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Fig. 1: Odd-even: An implementable but not (yet) projectable protocol and its
local implementations

Example 2.1 (Odd-even). Consider the following global type Goe:

+

{
p→q :o. q→r :o. µt1. (p→q :o. q→r :o. q→r :o. t1 + p→q :b. q→r :b. r→p :o. 0)

p→q :m.µt2. (p→q :o. q→r :o. q→r :o. t2 + p→q :b. q→r :b. r→p :m. 0)

A term p→ q :m specifies the exchange of message m between sender p and
receiver q. The term represents two local events observed separately due to
asynchrony: a send event p ▷ q!m observed by role p, and a receive event q ◁ p?m
observed by role q. The + operator denotes choice, µt.G denotes recursion, and
0 denotes protocol termination.

Fig. 1a visualizes Goe as an HMSC. The left and right sub-protocols respec-
tively correspond to the top and bottom branches of the protocol. Role p chooses
a branch by sending either o or m to q. On the left, q echoes this message to r.
Both branches continue in the same way: p sends an arbitrary number of o mes-
sages to q, each of which is forwarded twice from q to r. Role p signals the end
of the loop by sending b to q, which q forwards to r. Finally, depending on the
branch, r must send o or m to p.

Figs. 1b and 1c depict the structural similarity between the global type Goe

and the implementations for p and q. For the “choicemaker” role p, the reason is
evident. Role q’s implementation collapses the continuations of both branches in
the protocol into a single sub-component. For r (Fig. 1d), the situation is more
complicated. Role r does not decide on or learn directly which branch is taken,
but can deduce it from the parity of the number of o messages received from q:
odd means left and even means right. The resulting local implementation features
transitions going back and forth between the two branches that do not exist in
the global type. Syntactic projection operators fail to create such transitions. ◀

One response to the brittleness of existing projection operators has been to give
up on global type specifications altogether and instead revert to model checking
user-provided implementations [28, 36]. We posit that what needs rethinking is
not the concept of global types, but rather how projections are computed and
how implementability is checked.
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(a) Gr (b) G′
r (c) Gs (d) G′

s

Fig. 2: High-level message sequence charts for the global types of Example 2.2.

Our automata-theoretic approach. The synthesis step in our projection op-
erator uses textbook automata-theoretic constructions. From a given global type,
we derive a finite state machine, and use it to define a homomorphism automa-
ton for each role. We then determinize this homomorphism automaton via sub-
set construction to obtain a local candidate implementation for each role. If
the global type is implementable, this construction always yields an implemen-
tation. The implementations shown in Figs. 1b to 1d are the result of applying
this construction to Goe from Example 2.1. Notice that the state labels in Fig. 1d
correspond to sets of labels in the global protocol.

Unfortunately, not all global types are implementable.

Example 2.2. Consider the following four global types also depicted in Fig. 2:

Gr = +

{
p→q :o. q→r :o. p→r :o. 0

p→q :m. p→r :o. q→r :o. 0
Gs = +

{
p→q :o. r→q :o. 0

p→q :m. r→q :m. 0

G
′
r = +

{
p→q :o. q→r :o. r→p :o. p→r :o. 0

p→q :m. p→r :o. r→q :o. q→r :o. 0
G

′
s = +

{
p→q :o. r→q :b. 0

p→q :m. r→q :b. 0

Similar to Goe, in all four examples, p chooses a branch by sending either o or
m to q. The global type Gr is not implementable because r cannot learn which
branch was chosen by p. For any local implementation of r to be able to execute
both branches, it must be able to receive o from p and q in any order. Because
the two send events p ▷ r!o and q ▷ r!o are independent of each other, they may
be reordered. Consequently, any implementation of Gr would have to permit
executions that are consistent with global behaviors not described by Gr, such
as p→q :m. q→r :o. p→r :o. Contrast this with G′

r, which is implementable. In
the top branch of G′

r, role p can only send to r after it has received from r, which
prevents the reordering of the send events p▷r!o and q▷r!o. The bottom branch
is symmetric. Hence, r learns p’s choice based on which message it receives first.

For the global type Gs, role r again cannot learn the branch chosen by p.
That is, r cannot know whether to send o or m to q, leading inevitably to dead-
locking executions. In contrast, G′

s is again implementable because the expected
behavior of r is independent of the choice by p. ◀

These examples show that the implementability question is non-trivial. To
check implementability, we present conditions that precisely characterize when
the subset construction for G yields an implementation.
Overview. The rest of the paper is organized as follows. §3 contains relevant
definitions for our work. §4 describes the synthesis step of our projection. §5
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presents the two conditions that characterize implementability of a given global
type. In §6, we prove soundness of our projection via a stronger inductive in-
variant guaranteeing per-role agreement on a global run of the protocol. In §7,
we prove completeness by showing that our two conditions hold if a global type
is implementable. In §8, we discuss the complexity of our construction and con-
dition checks. §9 presents our artifact and evaluation, and §10 as well as §11
discuss related work.

3 Preliminaries

Words. Let Σ be a finite alphabet. Σ∗ denotes the set of finite words over Σ,
Σω the set of infinite words, and Σ∞ their union Σ∗ ∪Σω. A word u ∈ Σ∗ is a
prefix of word v ∈ Σ∞, denoted u ≤ v, if there exists w ∈ Σ∞ with u · w = v.

Message Alphabet. Let P be a set of roles and V be a set of messages. We define
the set of synchronous events Σsync := {p→q :m | p, q ∈ P and m ∈ V} where
p→ q :m denotes that message m is sent by p to q atomically. This is split for
asynchronous events. For a role p ∈ P, we define the alphabet Σp,! = {p ▷ q!m |
q ∈ P, m ∈ V} of send events and the alphabet Σp,? = {p◁q?m | q ∈ P, m ∈ V}
of receive events. The event p ▷ q!m denotes role p sending a message m to q,
and p ◁ q?m denotes role p receiving a message m from q. We write Σp =
Σp,! ∪Σp,?, Σ! =

⋃
p∈P Σp,!, and Σ? =

⋃
p∈P Σp,?. Finally, Σasync = Σ! ∪Σ?. We

say that p is active in x ∈ Σasync if x ∈ Σp. For each role p ∈ P, we define a
homomorphism ⇓Σp

, where x⇓Σp
= x if x ∈ Σp and ε otherwise. We write V(w)

to project the send and receive events in w onto their messages. We fix P and V
in the rest of the paper.

Global Types – Syntax. Global types for MSTs [31] are defined by the grammar:

G ::= 0 |
∑
i∈I

p→qi :mi.Gi | µt. G | t

where p, qi range over P, mi over V, and t over a set of recursion variables.
We require each branch of a choice to be distinct: ∀i, j ∈ I. i ̸= j ⇒ (qi,mi) ̸=

(qj ,mj), the sender and receiver of an atomic action to be distinct: ∀i ∈ I. p ̸= qi,
and recursion to be guarded: in µt.G, there is at least one message between µt
and each t in G. When |I| = 1, we omit

∑
. For readability, we sometimes use

the infix operator + for choice, instead of
∑

. When working with a protocol
described by a global type, we write G to refer to the top-level type, and we
use G to refer to its subterms. For the size of a global type, we disregard multiple
occurrences of the same subterm.

We use the extended definition of global types from [31] that allows a sender
to send messages to different roles in a choice. We call this sender-driven choice,
as in [38], while it was called generalized choice in [31]. This definition subsumes
classical MSTs that only allow directed choice [24]. The types we use focus on
communication primitives and omit features like delegation or parametrization.
We defer a detailed discussion of different MST frameworks to §11.
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Global Types – Semantics. As a basis for the semantics of a global type G, we
construct a finite state machine GAut(G) = (QG, Σsync , δG, q0,G, FG) where

– QG is the set of all syntactic subterms in G together with the term 0,
– δG is the smallest set containing (

∑
i∈I p→ qi :mi.Gi, p→ qi :mi, Gi) for

each i ∈ I, as well as (µt.G′, ε,G′) and (t, ε, µt.G′) for each subterm µt.G′,
– q0,G = G and FG = {0}.

We define a homomorphism split onto the asynchronous alphabet:

split(p→q :m) := p ▷ q!m. q ◁ p?m .

The semantics L(G) of a global type G is given by C∼(split(L(GAut(G))))
where C∼ is the closure under the indistinguishability relation ∼ [31]. Two events
are independent if they are not related by the happened-before relation [26].
For instance, any two send events from distinct senders are independent. Two
words are indistinguishable if one can be reordered into the other by repeatedly
swapping consecutive independent events. The full definition is in Appendix A.2.

Communicating State Machine [11]. A = {{Ap}}p∈P is a CSM over P and V if Ap

is a finite state machine over Σp for every p ∈ P, denoted by (Qp, Σp, δp, q0,p, Fp).
Let

∏
p∈P sp denote the set of global states and Chan = {(p, q) | p, q ∈ P, p ̸= q}

denote the set of channels. A configuration of A is a pair (s⃗, ξ), where s⃗ is a
global state and ξ : Chan → V∗ is a mapping from each channel to a sequence of
messages. We use s⃗p to denote the state of p in s⃗. The CSM transition relation,
denoted →, is defined as follows.

– (s⃗, ξ)
p▷q!m−−−−→ (s⃗ ′, ξ′) if (s⃗p, p ▷ q!m, s⃗ ′

p) ∈ δp, s⃗r = s⃗ ′
r for every role r ̸= p,

ξ′(p, q) = ξ(p, q) ·m and ξ′(c) = ξ(c) for every other channel c ∈ Chan.

– (s⃗, ξ)
q◁p?m−−−−→ (s⃗ ′, ξ′) if (s⃗q, q ◁ p?m, s⃗ ′

q) ∈ δq, s⃗r = s⃗ ′
r for every role r ̸= q,

ξ(p, q) = m · ξ′(p, q) and ξ′(c) = ξ(c) for every other channel c ∈ Chan.

In the initial configuration (s⃗0, ξ0), each role’s state in s⃗0 is the initial state q0,p
of Ap, and ξ0 maps each channel to ε. A configuration (s⃗, ξ) is said to be final iff
s⃗p is final for every p and ξ maps each channel to ε. Runs and traces are defined
in the expected way. A run is maximal if either it is finite and ends in a final
configuration, or it is infinite. The language L(A) of the CSM A is defined as the
set of maximal traces. A configuration (s⃗, ξ) is a deadlock if it is not final and has
no outgoing transitions. A CSM is deadlock-free if no reachable configuration is
a deadlock.

Finally, implementability is formalized as follows.

Definition 3.1 (Implementability [31]). A global type G is implementable
if there exists a CSM {{Ap}}p∈P such that the following two properties hold:
(i) protocol fidelity: L({{Ap}}p∈P) = L(G), and (ii) deadlock freedom: {{Ap}}p∈P
is deadlock-free. We say that {{Ap}}p∈P implements G.
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4 Synthesizing Implementations

The construction is carried out in two steps. First, for each role p ∈ P, we define
an intermediate state machine GAut(G)↓p that is a homomorphism of GAut(G).
We call GAut(G)↓p the projection by erasure for p, defined below.

Definition 4.1 (Projection by Erasure). Let G be some global type with
its state machine GAut(G) = (QG, Σsync , δG, q0,G, FG). For each role p ∈ P,
we define the state machine GAut(G)↓p= (QG, Σp ⊎ {ε}, δ↓, q0,G, FG) where

δ↓ := {q
split(a)⇓Σp−−−−−−−−→ q′ | q a−→ q′ ∈ δG}. By definition of split(-), it holds that

split(a)⇓Σp
∈ Σp ⊎ {ε}.

Then, we determinize GAut(G)↓p via a standard subset construction to obtain
a deterministic local state machine for p.

Definition 4.2 (Subset Construction). Let G be a global type and p be a
role. Then, the subset construction for p is defined as

C (G, p) =
(
Qp, Σp, δp, s0,p, Fp

)
where

– δ(s, a) := {q′ ∈ QG | ∃q ∈ s, q
a−→ ε−→∗ q′ ∈ δ↓}, for every s ⊆ QG and a ∈ Σp

– s0,p := {q ∈ QG | q0,G
ε−→∗ q ∈ δ↓},

– Qp := lfp⊆{s0,p}λQ.Q ∪ {δ(s, a) | s ∈ Q ∧ a ∈ Σp} \ {∅} , and
– δp := δ|Qp×Σp

– Fp := {s ∈ Qp | s ∩ FG ̸= ∅}

Note that the construction ensures that Qp only contains subsets of QG whose
states are reachable via the same traces, i.e. we typically have |Qp| ≪ 2|QG|.

The following characterization is immediate from the subset construction;
the proof can be found in Appendix B.1.

Lemma 4.3. Let G be a global type, r be a role, and C (G, r) be its subset
construction. If w is a trace of GAut(G), split(w)⇓Σr

is a trace of C (G, r). If u
is a trace of C (G, r), there is a trace w of GAut(G) such that split(w)⇓Σr

= u.
It holds that L(G)⇓Σr

= L(C (G, r)).

Using this lemma, we show that the CSM {{C (G, p)}}p∈P preserves all be-
haviors of G.

Lemma 4.4. For all global types G, L(G) ⊆ L({{C (G, p)}}p∈P).

We briefly sketch the proof here. Given that {{C (G, p)}}p∈P is deterministic,
to prove language inclusion it suffices to prove the inclusion of the respective
prefix sets:

pref(L(G)) ⊆ pref(L{{C (G, p)}}p∈P)

Let w be a word in L(G). If w is finite, membership in L({{C (G, p)}}p∈P) is im-
mediate from the claim above. If w is infinite, we show that w has an infinite run
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in {{C (G, p)}}p∈P using König’s Lemma. We construct an infinite graph Gw(V,E)
with V := {vρ | trace(ρ) ≤ w} and E := {(vρ1

, vρ2
) | ∃ x ∈ Σasync . trace(ρ2) =

trace(ρ1) · x}. Because {{C (G, p)}}p∈P is deterministic, Gw is a tree rooted at
vε, the vertex corresponding to the empty run. By König’s Lemma, every infi-
nite tree contains either a vertex of infinite degree or an infinite path. Because
{{C (G, p)}}p∈P consists of a finite number of communicating state machines, the
last configuration of any run has a finite number of next configurations, and Gw is
finitely branching. Therefore, there must exist an infinite path in Gw representing
an infinite run for w, and thus w ∈ L({{C (G, p)}}p∈P).

The proof of the inclusion of prefix sets proceeds by structural induction and
primarily relies on Lemma 4.3 and the fact that all prefixes in L(G) respect the
order of send before receive events.

5 Checking Implementability

We now turn our attention to checking implementability of a CSM produced
by the subset construction. We revisit the global types from Example 2.2 (also
shown in Fig. 2), which demonstrate that the naive subset construction does
not always yield a sound implementation. From these examples, we distill our
conditions that precisely identify the implementable global types.

In general, a global type G is not implementable when the agreement on
a global run of GAut(G) among all participating roles cannot be conveyed via
sending and receiving messages alone. When this happens, roles can take locally
permitted transitions that commit to incompatible global runs, resulting in a
trace that is not specified by G. Consequently, our conditions need to ensure
that when a role p takes a transition in C (G, p), it only commits to global runs
that are consistent with the local views of all other roles. We discuss the relevant
conditions imposed on send and receive transitions separately.

Send Validity. Consider Gs from Example 2.2. The CSM {{C (Gs, p)}}p∈P has
an execution with the trace p▷q!o·q◁p?o·r▷q!m. This trace is possible because the
initial state of C (Gs, r), s0,r, contains two states of GAut(Gs)↓r, each of which
has a single outgoing send transition labeled with r▷q!o and r▷q!m respectively.
Both of these transitions are always enabled in s0,r, meaning that r can send
r ▷ q!m even when p has chosen the top branch and q expects to receive o
instead of m from r. This results in a deadlock. In contrast, while the state
s0,r in C (G′

s, r) likewise contains two states of GAut(G′
s)↓r, each with a single

outgoing send transition, now both transitions are labeled with r ▷ q!b. These
two transitions collapse to a single one in C (G′

s, r). This transition is consistent
with both possible local views that p and q might hold on the global run.

Intuitively, to prevent the emergence of inconsistent local views from send
transitions of C (G, p), we must enforce that for every state s ∈ Qp with an
outgoing send transition labeled x, a transition labeled x must be enabled in all
states of GAut(G)↓p represented by s. We use the following auxiliary definition
to formalize this intuition subsequently.
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Definition 5.1 (Transition Origin and Destination). Let s
x−→ s′ ∈ δp

be a transition in C (G, p) and δ↓ be the transition relation of GAut(G)↓p. We
define the set of transition origins tr-orig(s

x−→ s′) and transition destinations
tr-dest(s

x−→ s′) as follows:

tr-orig(s
x−→ s′) := {G ∈ s | ∃G′ ∈ s′. G

x−→∗ G′ ∈ δ↓} and

tr-dest(s
x−→ s′) := {G′ ∈ s′ | ∃G ∈ s.G

x−→∗ G′ ∈ δ↓} .

Our condition on send transitions is then stated below.

Definition 5.2 (Send Validity). C (G, p) satisfies Send Validity iff every
send transition s

x−→ s′ ∈ δp is enabled in all states contained in s:

∀s x−→ s′ ∈ δp. x ∈ Σp,! =⇒ tr-orig(s
x−→ s′) = s .

Receive Validity. To motivate our condition on receive transitions, let us revisit
Gr from Example 2.2. The CSM {{C (Gr, p)}}p∈P recognizes the following trace
not in the global type language L(Gr):

p ▷ q!o · q ◁ p?o · q ▷ r!o · p ▷ r!o · r ◁ p?o · r ◁ q?o .

The issue lies with r which cannot distinguish between the two branches in Gr.
The initial state s0,r of C (Gr, r) has two states of GAut(Gr) corresponding to
the subterms Gt := q→ r : o. p→ r : o. 0 and Gb := p→ r : o. q→ r : o. 0 . Here,
Gt and Gb are the top and bottom branch of Gr respectively. This means that
there are outgoing transitions in s0,r labeled with r ◁ p?o and r ◁ q?o. If r takes
the transition labeled r ◁ p?o, it commits to the bottom branch Gb. However,
observe that the message o from p can also be available at this time point if the
other roles follow the top branch Gt. This is because p can send o to r without
waiting for r to first receive from q. In this scenario, the roles disagree on which
global run of GAut(Gr) to follow, resulting in the violating trace above.

Contrast this with G′
r. Here, s0,r again has outgoing transitions labeled with

r◁p?o and r◁q?o. However, if r takes the transition labeled r◁p?o, committing
to the bottom branch, no disagreement occurs. This is because if the other roles
are following the top branch, then p is blocked from sending to r until after it
has received confirmation that r has received its first message from q.

For a receive transition s
x−→ s1 in C (G, p) to be safe, we must enforce that

the receive event x cannot also be available due to reordered sent messages
in the continuation G2 ∈ s2 of another outgoing receive transition s

y−→ s2.
To formalize this condition, we use the set MB

(G...) of available messages for a
syntactic subterm G of G and a set of blocked roles B. This notion was already
defined in [31, Sec. 2.2]. Intuitively, MB

(G...) consists of all send events q ▷ r!m
that can occur on the traces of G such that m will be the first message added
to channel (q, r) before any of the roles in B takes a step.
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Available messages. The set of available messages is recursively defined on the
structure of the global type. To obtain all possible messages, we need to unfold
the distinct recursion variables once. For this, we define a map getµ from variable
to subterms and write getµG for getµ(G):

getµ(0) := [ ] getµ(t) := [ ] getµ(µt.G) := [t 7→ G] ∪ getµ(G)

getµ(
∑

i∈I p→qi :mi.Gi) :=
⋃

i∈I getµ(Gi)

The function MB,T
(-...) keeps a set of unfolded variables T , which is empty initially.

MB,T
(0...)

:= ∅ MB,T
(µt.G...)

:= M
B,T∪{t}
(G...) MB,T

(t...)
:=

{
∅ if t ∈ T

M
B,T∪{t}
(getµG(t)...) if t ̸∈ T

MB,T
(
∑

i∈I p→qi:mi.Gi...)
:=

{⋃
i∈I,m∈V(M

B,T
(Gi...)

\ {qi ◁ p?m}) ∪ {qi ◁ p?mi} if p ̸∈ B⋃
i∈I M

B∪{qi},T
(Gi...)

if p ∈ B

We write MB
(G...) for MB,∅

(G...). If B is a singleton set, we omit set notation and

write Mp

(G...) for M
{p}
(G...). The set of available messages captures the possible

states of all channels before a given receive transition is taken.

Definition 5.3 (Receive Validity). C (G, p) satisfies Receive Validity iff no
receive transition is enabled in an alternative continuation that originates from
the same source state:

∀s p◁q1?m1−−−−−→ s1, s
p◁q2?m2−−−−−→ s2 ∈ δp.

q1 ̸= q2 =⇒ ∀ G2 ∈ tr-dest(s
p◁q2?m2−−−−−→ s2). q1 ▷ p!m1 /∈ Mp

(G2...)
.

Subset Projection. We are now ready to define our projection operator.

Definition 5.4 (Subset Projection of G). The subset projection P(G, p)
of G onto p is C (G, p) if it satisfies Send Validity and Receive Validity. We lift
this operation to a partial function from global types to CSMs in the expected way.

We conclude our discussion with an observation about the syntactic structure
of the subset projection: Send Validity implies that no state has both outgoing
send and receive transitions (also known as mixed choice).

Corollary 5.5 (No Mixed Choice). If P(G, p) satisfies Send Validity, then
for all s x1−→ s1, s

x2−→ s2 ∈ δp, x1 ∈ Σ! iff x2 ∈ Σ!.

6 Soundness

In this section, we prove the soundness of our subset projection, stated as follows.

Theorem 6.1. Let G be a global type and {{P(G, p)}}p∈P be the subset projec-
tion. Then, {{P(G, p)}}p∈P implements G.
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Recall that implementability is defined as protocol fidelity and deadlock free-
dom. Protocol fidelity consists of two language inclusions. The first inclusion,
L(G) ⊆ L({{P(G, p)}}p∈P), enforces that the subset projection generates at
least all behaviors of the global type. We showed in Lemma 4.4 that this holds
for the subset construction alone (without Send and Receive Validity).

The second inclusion, L({{P(G, p)}}p∈P) ⊆ L(G), enforces that no new be-
haviors are introduced. The proof of this direction relies on a stronger inductive
invariant that we show for all traces of the subset projection. As discussed in §5,
violations of implementability occur when roles commit to global runs that are
inconsistent with the local views of other roles. Our inductive invariant states
the exact opposite: that all local views are consistent with one another. First,
we formalize the local view of a role.

Definition 6.2 (Possible run sets). Let G be a global type and GAut(G) be
the corresponding state machine. Let p be a role and w ∈ Σ∗

async be a word. We
define the set of possible runs RG

p (w) as all maximal runs of GAut(G) that are
consistent with p’s local view of w:

RG
p (w) := {ρ is a maximal run of GAut(G) | w⇓Σp

≤ split(trace(ρ))⇓Σp
} .

While Definition 6.2 captures the set of maximal runs that are consistent
with the local view of a single role, we would like to refer to the set of runs that
is consistent with the local view of all roles. We formalize this as the intersection
of the possible run sets for all roles, which we denote as

I(w) :=
⋂
p∈P

RG
p (w) .

With these definitions in hand, we can now formulate our inductive invariant:

Lemma 6.3. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let w be a trace of {{P(G, p)}}p∈P . It holds that I(w) is non-empty.

The reasoning for the sufficiency of Lemma 6.3 is included in the proof of
Theorem 6.1, found in Appendix C. In the rest of this section, we focus our
efforts on how to show this inductive invariant, namely that the intersection of
all roles’ possible run sets is non-empty.

We begin with the observation that the empty trace ε is consistent with all
runs. As a result, I(ε) =

⋂
p∈P RG

p (ε) contains all maximal runs in GAut(G). By
definition, state machines for global types include at least one run, and the base
case is trivially discharged. Intuitively, I(w) shrinks as more events are appended
to w, but we show that at no point does it shrink to ∅. We consider the cases
where a send or receive event is appended to the trace separately, and show that
the intersection set shrinks in a principled way that preserves non-emptiness. In
fact, when a trace is extended with a receive event, Receive Validity guarantees
that the intersection set does not shrink at all.

Lemma 6.4. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let wx be a trace of {{P(G, p)}}p∈P such that x ∈ Σ?. Then, I(w) = I(wx).
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x = p ▷ q!m, w ∈ Σ∗
async

RG
p (wx)

⋂
r∈P RG

r (w)
RG

p (w)

y = q ◁ p?m, w′ = wxu with u ∈ Σ∗
async

RG
p (w′) RG

q (w′y)

RG
q (w′)

⋂
r∈P RG

r (w′)

Fig. 3: Evolution of RG
- (-) sets when p sends a message m and q receives it.

To prove this equality, we further refine our characterization of intersection
sets. In particular, we show that in the receive case, the intersection between the
sender and receiver’s possible run sets stays the same, i.e.

RG
p (w) ∩ RG

q (w) = RG
p (wx) ∩ RG

q (wx) .

Note that it is not the case that the receiver only follows a subset of the sender’s
possible runs. In other words, RG

q (w) ⊆ RG
p (w) is not inductive. The equality

above simply states that a receive action can only eliminate runs that have
already been eliminated by its sender. Fig. 3 depicts this relation.

Given that the intersection set strictly shrinks, the burden of eliminating
runs must then fall upon send events. We show that send transitions shrink the
possible run set of the sender in a way that is prefix-preserving. To make this
more precise, we introduce the following definition on runs.

Definition 6.5 (Unique splitting of a possible run). Let G be a global type,
p a role, and w ∈ Σ∗

async a word. Let ρ be a possible run in RG
p (w). We define

the longest prefix of ρ matching w:

α′ := max{ρ′ | ρ′ ≤ ρ ∧ split(trace(ρ′))⇓Σp
≤ w⇓Σp

} .

If α′ ̸= ρ, we can split ρ into ρ = α · G l−→ G′ · β where α′ = α · G, G′ denotes
the state following G, and β denotes the suffix of ρ following α ·G ·G′. We call
α · G l−→ G′ · β the unique splitting of ρ for p matching w. We omit the role p

when obvious from context. This splitting is always unique because the maximal
prefix of any ρ ∈ RG

p (w) matching w is unique.

When role p fires a send transition p ▷ q!m, any run ρ = α · G l−→ G′ · β in
p’s possible run with split(l)⇓Σp

̸= p ▷ q!m is eliminated. While the resulting
possible run set could no longer contain runs that end with G′ ·β, Send Validity
guarantees that it must contain runs that begin with α · G. This is formalized
by the following lemma.

Lemma 6.6. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let wx be a trace of {{P(G, p)}}p∈P such that x ∈ Σ! ∩Σp for some p ∈ P. Let
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ρ be a run in I(w), and α · G l−→ G′ · β be the unique splitting of ρ for p with
respect to w. Then, there exists a run ρ′ in I(wx) such that α ·G ≤ ρ′.

This concludes our discussion of the send and receive cases in the inductive
step to show the non-emptiness of the intersection of all roles’ possible run sets.
The full proofs and additional definitions can be found in Appendix C.

7 Completeness

In this section, we prove completeness of our approach. While soundness states
that if a global type’s subset projection is defined, it then implements the global
type, completeness considers the reverse direction.

Theorem 7.1 (Completeness). If G is implementable, then {{P(G, p)}}p∈P
is defined.

We sketch the proof and refer to Appendix D for the full proof.
From the assumption that G is implementable, we know there exists a witness

CSM that implements G. While the soundness proof picks our subset projection
as the existential witness for showing implementability – thereby allowing us
to reason directly about a particular implementation – completeness only guar-
antees the existence of some witness CSM. We cannot assume without loss of
generality that this witness CSM is our subset construction; however, we must
use the fact that it implements G to show that Send and Receive Validity hold
on our subset construction.

We proceed via proof by contradiction: we assume the negation of Send and
Receive Validity for the subset construction, and show a contradiction to the
fact that this witness CSM implements G. In particular, we contradict protocol
fidelity (Definition 3.1(i)), stating that the witness CSM generates precisely the
language L(G). To do so, we exploit a simulation argument: we first show that
the negation of Send and Receive Validity forces the subset construction to
recognize a trace that is not a prefix of any word in L(G). Then, we show that
this trace must also be recognized by the witness CSM, under the assumption
that the witness CSM implements G.

To highlight the constructive nature of our proof, we convert our proof obli-
gation to a witness construction obligation. To contradict protocol fidelity, it
suffices to construct a witness trace v0 satisfying two properties, where {{Bp}}p∈P
is our witness CSM:

(a) v0 is a trace of {{Bp}}p∈P , and
(b) the run intersection set of v0 is empty: I(v0) =

⋂
p∈P RG

p (v0) = ∅.

We first establish the sufficiency of conditions (a) and (b). Because {{Bp}}p∈P
is deadlock-free by assumption, every prefix extends to a maximal trace. Thus,
to prove the inequality of the two languages L({{Bp}}p∈P) and L(G), it suffices
to prove the inequality of their respective prefix sets. In turn, it suffices to show
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the existence of a prefix of a word in one language that is not a prefix of any
word in the other. We choose to construct a prefix in the CSM language that is
not a prefix in L(G). We again leverage the definition of intersection sets (Defi-
nition 6.2) to weaken the property of language non-membership to the property
of having an empty intersection set as follows. By the semantics of L(G), for
any w ∈ L(G), there exists w′ ∈ split(L(GAut(G))) with w ∼ w′. For any
w′ ∈ split(L(GAut(G))), it trivially holds that w′ has a non-empty intersection
set. Because intersection sets are invariant under the indistinguishability rela-
tion ∼, w must also have a non-empty intersection set. Since intersection sets
are monotonically decreasing, if the intersection set of w is non-empty, then for
any v ≤ w, the intersection set of v is also non-empty. Modus tollens of the chain
of reasoning above tells us that in order to show a word is not a prefix in L(G),
it suffices to show that its intersection set is empty.

Having established the sufficiency of properties (a) and (b) for our witness
construction, we present the steps to construct v0 from the negation of Send and
Receive Validity respectively. We start by constructing a trace in {{C (G, p)p}}p∈P
that satisfies (b), and then show that {{Bp}}p∈P also recognizes the trace, thereby
satisfying (a). In both cases, let p be the role and s be the state for which the
respective validity condition is violated.

Send Validity (Definition 5.2). Let s
p▷q!m−−−−→ s′ ∈ δp be a transition such that

tr-orig(s
p▷q!m−−−−→ s′) ̸= s .

First, we find a trace u of {{C (G, p)p}}p∈P that satisfies: (1) role p is in state s
in the CSM configuration reached via u, and (2) the run of GAut(G) on u

visits a state in s \ tr-orig(s
p▷q!m−−−−→ s′). We obtain such a witness u from

the split(trace(−)) of a run prefix of GAut(G) that ends in some state in
s \ tr-orig(s p▷q!m−−−−→ s′). Any prefix thus obtained satisfies (1) by definition of
C (G, p), and satisfies (2) by construction. Due to the fact that send transitions
are always enabled in a CSM, u · p ▷ q!m must also be a trace of {{C (G, p)}}p∈P ,
thus satisfying property (a) by a simulation argument. We then argue that
u ·p▷q!m satisfies property (b), stating that I(u ·p▷q!m) is empty: the negation
of Send Validity gives that there exist no run extensions from our candidate
state in s \ tr-orig(s p▷q!m−−−−→ s′) with the immediate next action p −→ q : m, and
therefore there exists no maximal run in GAut(G) consistent with u · p ▷ q!m.

Receive Validity (Definition 5.3). Let s
p◁q1?m1−−−−−→ s1 and s

p◁q2?m2−−−−−→ s2 ∈ δp

be two transitions, and let G2 ∈ tr-dest(s
p◁q2?m2−−−−−→ s2) such that

q1 ̸= q2 and q1 ▷ p!m1 ∈ Mp

(G2...)
.

Constructing the witness v0 pivots on finding a trace u of {{C (G, p)}}p∈P such
that both u·p◁q1?m1 and u·p◁q2?m2 are traces of {{C (G, p)}}p∈P . Equivalently,
we show there exists a reachable configuration of {{C (G, p)}}p∈P in which p can
receive either message from distinct senders q1 and q2. Formally, the local state
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of p has two outgoing states labeled with p ◁ q1?m1 and p ◁ q2?m2, and the
channels q1, p and q2, p have m1 and m2 at their respective heads. We construct
such a u by considering a run in GAut(G) that contains two transitions labeled
with q1 −→ p : m1 and q2 −→ p : m2. Such a run must exist due to the negation of
Receive Validity. We start with the split trace of this run, and argue that, from
the definition of M(-) and the indistinguishability relation ∼, we can perform
iterative reorderings using ∼ to bubble the send action q1 ▷ p!m1 to the position
before the receive action p◁q2?m2. Then, (a) for u·p◁q1?m1 holds by a simulation
argument. We then separately show that (b) holds for p ◁ q1?m1 using similar
reasoning as the send case to complete the proof that u · p ◁ q1?m1 suffices as a
witness for v0.

It is worth noting that the construction of the witness prefix v0 in the
proof immediately yields an algorithm for computing counterexample traces
to implementability.

Remark 7.2 (Mixed Choice is Not Needed to Implement Global Types). The-
orem 7.1 basically shows the necessity of Send Validity for implementability.
Corollary 5.5 shows that Send Validity precludes states with both send and re-
ceive outgoing transitions. Together, this implies that an implementable global
type can always be implemented without mixed choice. Note that the syntactic
restrictions on global types do not inherently prevent mixed choice states from
arising in a role’s subset construction, as evidenced by r in the following type:
p→ q : l. q→ r :m. 0 + p→ q : r. r→ q :m. 0. Our completeness result thus implies
that this type is not implementable. Most MST frameworks [18,24,31] implicitly
force no mixed choice through syntactic restrictions on local types. We are the
first to prove that mixed choice states are indeed not necessary for completeness.
This is interesting because mixed choice is known to be crucial for the expressive
power of the synchronous π-calculus compared to its asynchronous variant [32].

8 Complexity

In this section, we establish PSPACE-completeness of checking implementability
for global types.

Theorem 8.1. The MST implementability problem is PSPACE-complete.

Proof. We first establish the upper bound. The decision procedure enumerates
for each role p the subsets of GAut(G)↓p. This can be done in polynomial space
and exponential time. For each p and s ⊆ QG, it then (i) checks membership of s
in Qp of C (G, p), and (ii) if s ∈ Qp, checks whether all outgoing transitions of s
in C (G, p) satisfy Send and Receive Validity. Check (i) can be reduced to the
intersection non-emptiness problem for nondeterministic finite state machines,
which is in PSPACE [44]. It is easy to see that check (ii) can be done in poly-
nomial time. In particular, the computation of available messages for Receive
Validity only requires a single unfolding of every loop in G.
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Note that the synthesis problem has the same complexity. The subset con-
struction to determinize GAut(G)↓p can be done using a PSPACE transducer.
While the output can be of exponential size, it is written on an extra tape that is
not counted towards memory usage. However, this means we need to perform the
validity checks as described above instead of using the computed deterministic
state machines.

Second, we prove the lower bound. The proof is inspired by the proof for The-
orem 4 [4] in which Alur et al. prove that checking safe realizability of bounded
HMSCs is PSPACE-hard. We reduce the PSPACE-complete problem of check-
ing universality of an NFA M = (Q,∆, δ, q0, F ) to checking implementability.
Without loss of generality, we assume that every state can reach a final state. We
construct a global type G for p, q and r that is implementable iff L(M) = ∆∗.
For this, we define subterms Gl and Gr as well as Gq for every q ∈ Q and G∗.
We use a fresh letter ⊥ to handle final states of M . We also define p↔q :m as
an abbreviation for p→q :m. q→p :m.

G := Gl +Gr

Gl := p↔q : l . p↔r :go .Gq0

Gq :=

{∑
(a,q′)∈δ(q)(r↔q :a .Gq′) if q /∈ F

r↔q :⊥ . 0 +
∑

(a,q′)∈δ(q)(r↔q :a .Gq′) if q ∈ F

Gr := p↔q :r . p↔r :go .G∗

G∗ := r↔q :⊥ . 0 +
∑
a∈∆

(r↔q :a .G∗)

The global type G is constructed such that p first decides whether words from
L(M) or from ∆∗ are sent subsequently. This decision is known to p and q but not
to r. The protocol then continues with r sending letters from ∆ to q, and p is not
involved. Intuitively, q is able to receive these letters if and only if L(M) = ∆∗.
From Theorems 6.1 and 7.1, we know that {{C (G, p)p}}p∈P implements G if G
is implementable.

We claim that {{C (G, p)p}}p∈P implements G if and only if L(M) = ∆∗.
First, assume that L(M) ̸= ∆∗. Then, there exists w /∈ L(M). We can con-

struct the following run of {{C (G, p)p}}p∈P that deadlocks. Role p chooses the
left subterm Gl and, subsequently, r sends w to q. We do a case analysis on
whether w contains a prefix w′ such that w′ /∈ pref(L(M)). If so, sending the
last letter of a minimal prefix leads to a deadlock in {{C (G, p)p}}p∈P , contra-
dicting deadlock freedom. If not, it holds that w is a prefix of a word in L(M).
Still, role r can send ⊥, which cannot be received, also contradicting deadlock
freedom.

Second, assume that L(M) = ∆∗. With this, it is fine that r does not know
the branch. Role q will be able to receive all messages since C (G, q) can receive,
letter by letter, w.⊥ for every w ∈ L(M) from r. Thus, protocol fidelity and
deadlock freedom hold, concluding the proof.
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Note that PSPACE-hardness only holds if the size of G does not account
for common subterms multiple times. Because every message is immediately
acknowledged, the constructed global type specifies a universally 1-bounded [23]
language, proving that PSPACE-hardness persists for such a restriction. For our
construction, it does not hold that V(L(Gl)⇓Σq,?

) = L(M). We chose so to have
a more compact protocol. However, we can easily fix this by sending the decision
of r first to p, allowing to omit the messages ⊥ to q. ⊓⊔

This result and the fact that local languages are preserved by the subset
projection (Lemma 4.3) leads to the following observation.

Corollary 8.2. Let G be an implementable global type. Then, the subset projec-
tion {{P(G, p)}}p∈P is a local language preserving implementation for G, i.e.,
L(P(G, p)) = L(G)⇓Σp

for every p, and can be computed in PSPACE.

Remark 8.3 (MST implementability with directed choice is PSPACE-hard). The-
orem 8.1 is stated for global types with sender-driven choice but the provided
type is in fact directed. Thus, the PSPACE lower bound also holds for imple-
mentability of types with directed choice.

9 Evaluation

We consider the following three aspects in the evaluation of our approach:
(E1) difficulty of implementation (E2) completeness, and (E3) comparison to
state of the art.

For this, we implemented our subset projection in a prototype tool [1,37]. It
takes a global type as input and computes the subset projection for each role.
It was straightforward to implement the core functionality in approximately 700
lines of Python3 code closely following the formalization (E1).

We consider global types (and communication protocols) from seven different
sources as well as all examples from this work (cf. 1st column of Table 1). Our
experiments were run on a computer with an Intel Core i7-1165G7 CPU and used
at most 100MB of memory. The results are summarized in Table 1. The reported
size is the number of states and transitions of the respective state machine, which
allows not to account for multiple occurrences of the same subterm. As expected,
our tool can project every implementable protocol we have considered (E2).

Regarding the comparison against the state of the art (E3), we directly com-
pared our subset projection to the incomplete approach by Majumdar et al. [31],
and found that the run times are in the same order of magnitude in general (typ-
ically a few milliseconds). However, the projection of [31] fails to project four
implementable protocols (including Example 2.1). We discuss some of the other
examples in more detail in the next section. We further note that most of the
run times reported by Scalas and Yoshida [36] on their model checking based
tool are around 1 second and are thus two to three orders of magnitude slower.



18 E. Li, F. Stutz, T. Wies, D. Zufferey

Source Name Impl. Subset Proj. Size |P| Size [31]
(complete) Proj’s (incomplete)

[35]
Instrument Contr. Prot. A ✓✓✓ ✓✓✓ 0.4ms 22 3 61 ✓✓✓ 0.2ms
Instrument Contr. Prot. B ✓✓✓ ✓✓✓ 0.3ms 17 3 47 ✓✓✓ 0.1ms
OAuth2 ✓✓✓ ✓✓✓ 0.1ms 10 3 23 ✓✓✓ <0.1ms

[34] Multi Party Game ✓✓✓ ✓✓✓ 0.5ms 21 3 67 ✓✓✓ 0.1ms

[24] Streaming ✓✓✓ ✓✓✓ 0.2ms 13 4 28 ✓✓✓ <0.1ms

[13] Non-Compatible Merge ✓✓✓ ✓✓✓ 0.2ms 11 3 25 ✓✓✓ 0.1ms

[45] Spring-Hibernate ✓✓✓ ✓✓✓ 1.0ms 62 6 118 ✓✓✓ 0.7ms

[31]

Group Present ✓✓✓ ✓✓✓ 0.6ms 51 4 85 ✓✓✓ 0.6ms
Late Learning ✓✓✓ ✓✓✓ 0.3ms 17 4 34 ✓✓✓ 0.2ms
Load Balancer (n = 10) ✓✓✓ ✓✓✓ 3.9ms 36 12 106 ✓✓✓ 2.4ms
Logging (n = 10) ✓✓✓ ✓✓✓ 71.5ms 81 13 322 ✓✓✓ 10.0ms

[38]

2 Buyer Protocol ✓✓✓ ✓✓✓ 0.5ms 22 3 60 ✓✓✓ 0.2ms
2B-Prot. Omit No ✓✓✓ ✓✓✓ 0.4ms 19 3 56 (×) 0.1ms
2B-Prot. Subscription ✓✓✓ ✓✓✓ 0.7ms 46 3 95 (×) 0.3ms
2B-Prot. Inner Recursion ✓✓✓ ✓✓✓ 0.4ms 17 3 51 ✓✓✓ 0.1ms

New

Odd-even (Example 2.1) ✓✓✓ ✓✓✓ 0.5ms 32 3 70 (×) 0.2ms
Gr – Receive Val. Violated (§2) × × 0.1ms 12 3 - (×) <0.1ms
G′

r – Receive Val. Satisfied (§2) ✓✓✓ ✓✓✓ 0.2ms 16 3 35 ✓✓✓ 0.1ms
Gs – Send Val. Violated (§2) × × <0.1ms 8 3 - (×) <0.1ms
G′

s – Send Val. Satisfied (§2) ✓✓✓ ✓✓✓ <0.1ms 7 3 17 ✓✓✓ <0.1ms
Gfold (§10) ✓✓✓ ✓✓✓ 0.4ms 21 3 50 (×) 0.1ms
Gunf (§10) ✓✓✓ ✓✓✓ 0.4ms 30 3 61 ✓✓✓ 0.2ms

Table 1: Projecting Global Types. For every protocol, we report whether it is
implementable ✓✓✓ or not ×, the time to compute our subset projection and the
generalized projection by Majumdar et al. [31] as well as the outcome as ✓✓✓ for
“implementable”, × for “not implementable” and (×) for “not known”. We also give
the size of the protocol (number of states and transitions), the number of roles,
the combined size of all subset projections (number of states and transitions).

10 Discussion

Success of Syntactic Projections Depends on Representation. Let us il-
lustrate how unfolding recursion helps syntactic projection operators to succeed.
Consider this implementable global type, which is not syntactically projectable:

Gfold := +

{
p→q :o. µt1. (p→q :o. q→r :o. t1 + p→q :b. q→r :b. 0)

p→q :m. q→r :m.µt2. (p→q :o. q→r :o. t2 + p→q :b. q→r :b. 0)
.

Similar to projection by erasure, a syntactic projection erases events that a role is
not involved in and immediately tries to merge different branches. The merge op-
erator is a partial operator that checks sufficient conditions for implementability.
Here, the merge operator fails for r because it cannot merge a recursion vari-
able binder and a message reception. Unfolding the global type preserves the
represented protocol and resolves this issue:

Gunf := +

p→q :o.

{
p→q :b. q→r :b. 0

p→q :o. q→r :o. µt1. (p→q :o. q→r :o. t1 + p→q :b. q→r :b. 0)

p→q :m. q→r :m.µt2. (p→q :o. q→r :o. t2 + p→q :b. q→r :b. 0)

.
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(We refer to Fig. 4 in Appendix E.1 for visual representations of both global
types.) This global type can be projected with most syntactic projection oper-
ators and shows that the representation of the global type matters for syntactic
projectability. However, such unfolding tricks do not always work, e.g. for the
odd-even protocol (Example 2.1). We avoid this brittleness using automata and
separating the synthesis from checking implementability.
Entailed Properties from the Literature. We defined implementability for
a global type as the question of whether there exists a deadlock-free CSM that
generates the same language as the global type. Various other properties of
implementations and protocols have been proposed in the literature. Here, we
give a brief overview and defer to Appendix E.2 for a detailed analysis. Progress
[18], a common property, requires that every sent message is eventually received
and every expected message will eventually be sent. With deadlock freedom, our
subset projection trivially satisfies progress for finite traces. For infinite traces,
as expected, fairness assumptions are required to enforce progress. Similarly, our
subset projection prevents unspecified receptions [14] and orphan messages [9,
21], respectively interpreted in our multiparty setting with sender-driven choice.
We also ensure that every local transition of each role is executable [14], i.e.
it is taken in some run of the CSM. Any implementation of a global type has
the stable property [28], i.e., one can always reach a configuration with empty
channels from every reachable configuration. While the properties above are
naturally satisfied by our subset projection, the following ones can be checked
directly on an implementable global type without explicitly constructing the
implementation. A global type is terminating [36] iff it does not contain recursion
and never-terminating [36] iff it does not contain term 0.

11 Related Work

MSTs were introduced by Honda et al. [24] with a process algebra semantics,
and the connection to CSMs was established soon afterwards [20].

In this work, we present a complete projection procedure for global types with
sender-driven choice. The work by Castagna et al. [13] is the only one to present
a projection that aims for completeness. Their semantic conditions, however, are
not effectively computable and their notion of completeness is “less demanding
than the classical ones” [13]. They consider multiple implementations, generating
different sets of traces, to be sound and complete with regard to a single global
type [13, Sec. 5.3]. In addition, the algorithmic version of their conditions does
not use global information as our message availability analysis does.

MST implementability relates to safe realizability of HMSCs, which is unde-
cidable in general but decidable for certain classes [30]. Stutz [38] showed that
implementability of global types that are always able to terminate is decidable.1
The EXPSPACE decision procedure is obtained via a reduction to safe realiz-
ability of globally-cooperative HMSCs, by proving that the HMSC encoding [39]

1This syntactic restriction is referred to as 0-reachability in [38].
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of any implementable global type is globally-cooperative and generalizing results
for infinite executions. Thus, our PSPACE-completeness result both generalizes
and tightens the earlier decidability result obtained in [38]. Stutz [38] also inves-
tigates how HMSC techniques for safe realizability can be applied to the MST
setting – using the formal connection between MST implementability and safe
realizability of HMSCs – and establishes an undecidability result for a variant
of MST implementability with a relaxed indistinguishability relation.

Similar to the MST setting, there have been approaches in the HMSC liter-
ature that tie branching to a role making a choice. We refer the reader to the
work by Majumdar et al. [31] for a survey.

Standard MST frameworks project a global type to a set of local types
rather than a CSM. Local types are easily translated to FSMs [31, Def.11].
Our projection operator, though, can yield FSMs that cannot be expressed
with the limited syntax of local types. Consider this implementable global type:
p→ q : o. 0 + p→ q :m. p→ r : b. 0 . The subset projection for r has two final
states connected by a transition labeled r ◁p?b. In the syntax of local types, 0 is
the only term indicating termination, which means that final states with outgo-
ing transitions cannot be expressed. In contrast to the syntactic restrictions for
global types, which are key to effective verification, we consider local types un-
necessarily restrictive. Usually, local implementations are type-checked against
their local types and subtyping gives some implementation freedom [12,16,17,27].
However, one can also view our subset projection as a local specification of the
actual implementation. We conjecture that subtyping would then amount to a
variation of alternating refinement [5].

CSMs are Turing-powerful [11] but decidable classes were obtained for differ-
ent semantics: restricted communication topology [33,42], half-duplex communi-
cation (only for two roles) [14], input-bounded [10], and unreliable channels [2,3].
Global types (as well choreography automata [7]) can only express existentially
1-bounded, 1-synchronizable and half-duplex communication [39]. Key to this
result is that sending and receiving a message is specified atomically in a global
type — a feature Dagnino et al. [19] waived for their deconfined global types.
However, Dagnino et al. [19] use deconfined types to capture the behavior of a
given system rather than projecting to obtain a system that generates specified
behaviors.

This work relies on reliable communication as is standard for MST frame-
works. Work on fault-tolerant MST frameworks [8, 43] attempts to relax this
restriction. In the setting of reliable communication, both context-free [25, 40]
and parametric [15, 22] versions of session types have been proposed to capture
more expressive protocols and entire protocol families respectively. Extending
our approach to these generalizations is an interesting direction for future work.
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A Additional Material for §3

A.1 Additional Definitions

Given a word w = w0 . . . wn, we use w[i] to denote the i-th symbol wi ∈ Σ, and
w[0..i] to denote the subword between and including w0 and wi, w0 . . . wi.

A.2 Indistinguishability Relation [31]

We define a family of indistinguishability relations ∼i ⊆ Σ∗
async × Σ∗

async for
i ≥ 0 as follows. For all w ∈ Σ∗, we have w ∼0 w. For i = 1, we define:

(1) If p ̸= r, then w.p ▷ q!m.r ▷ s!m′.u ∼1 w.r ▷ s!m′.p ▷ q!m.u.
(2) If q ̸= s, then w.q ◁ p?m.s ◁ r?m′.u ∼1 w.s ◁ r?m′.q ◁ p?m.u.
(3) If p ̸= s∧(p ̸= r∨q ̸= s), then w.p▷q!m.s◁r?m′.u ∼1 w.s◁r?m′.p▷q!m.u.
(4) If |w⇓p▷q!_| > |w⇓q◁p?_|, then w.p▷q!m.q◁p?m′.u ∼1 w.q◁p?m′.p▷q!m.u.

Let w,w′, w′′ be sequences of events s.t. w ∼1 w′ and w′ ∼i w
′′ for some i. Then,

w ∼i+1 w′′. We define w ∼ u if w ∼n u for some n.
It is easy to see that ∼ is an equivalence relation. Define u ⪯∼ v if there is

w ∈ Σ∗ such that u.w ∼ v. Observe that u ∼ v iff u ⪯∼ v and v ⪯∼ u.
For infinite words u, v ∈ Σω, we define u ⪯ω

∼ v if for each finite prefix u′ of
u, there is a finite prefix v′ of v such that u′ ⪯∼ v′. Define u ∼ v iff u ⪯ω

∼ v and
v ⪯ω

∼ u.
We lift the equivalence relation ∼ on Σ∞ to languages:

C∼(L) =

{
w′ |

∨ w′ ∈ Σ∗ ∧ ∃w ∈ Σ∗. w ∈ L and w′ ∼ w
w′ ∈ Σω ∧ ∃w ∈ Σω. w ∈ L and w′ ⪯ω

∼ w

}
For the infinite case, we take the downward closure w.r.t. ⪯ω

∼. Notice that the
closure operator is asymmetric. Consider the protocol (p ▷ q!m.q ◁ p?m)ω. Since
we do not make any fairness assumption on scheduling, we need to include in
the closure the execution where only the sender is scheduled, i.e., (p ▷ q!m)ω ⪯ω

∼
(p ▷ q!m.q ◁ p?m)ω.

A.3 State Machine

A state machine A is a 5-tuple (Q,∆, δ, q0, F ) where Q is a finite set of states, ∆
is a finite alphabet, δ ⊆ Q× (Σ ∪ {ε})×Q is a transition relation, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of final states. As is standard, we write q

x−→ q′

for (q, x, q′) ∈ δ and q
w−→∗ q′ for its reflexive and transitive hull for w ∈ ∆∗. We

define the runs and traces in the standard way. A run is maximal if it is infinite
or if it ends at a final state. The language L(A) is the set of (finite or infinite)
maximal traces.
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B Additional Material for §4

B.1 Proofs for §4

Lemma 4.3. Let G be a global type, r be a role, and C (G, r) be its subset
construction. If w is a trace of GAut(G), split(w)⇓Σr

is a trace of C (G, r). If u
is a trace of C (G, r), there is a trace w of GAut(G) such that split(w)⇓Σr

= u.
It holds that L(G)⇓Σr

= L(C (G, r)).

Proof. All claims are rather straightforward from the definitions and construc-
tions and the proofs exploit the connection to the projection by erasure. We still
spell them out to familiarize the reader with these.

We prove the first claim first. By construction, for every run ρ in GAut(G),
there exists a run ρ′ in the projection by erasure GAut(G)↓r. Let ρ be the run
for trace w in GAut(G). Then, ρ is also a run in GAut(G)↓r with trace w⇓Σp

.
Since GAut(G)↓r might be non-deterministic, we apply the subset construction
from Definition 4.2. For the reachable states, this is equivalent to the definition
by Sipser [?, Thm. 1.39].Thus, the constructed deterministic finite state machine
can mimic any run (which is initial by definition) in GAut(G)↓r: for every run ρ′

in GAut(G)↓r with trace w′, there is a run ρ′′ in C (G, r) with trace w′.
For the second claim, we consider a trace u of C (G, r). Because of the subset

construction, it holds that for every run ρ′ in C (G, r) with trace w′, there is a
run ρ′′ in the projection by erasure GAut(G)↓r with trace w′. By definition of
the projection by erasure, a run ρ′′′ in GAut(G) exists with the same sequence
of syntactic subterms as ρ′′ and split(trace(ρ′′′))⇓Σp

= w′.
From this, it easily follows that L(C (G, r)) = L(GAut(G)↓r) and, thus,

L(C (G, r)) = L(G)⇓Σr
. ⊓⊔

Lemma 4.4. For all global types G, L(G) ⊆ L({{C (G, p)}}p∈P).

Proof. Given that {{C (G, p)}}p∈P is deterministic, to prove language inclusion it
suffices to prove the inclusion of the respective prefix sets:

pref(L(G)) ⊆ pref(L{{C (G, p)}}p∈P)

We prove this via structural induction on w. The base case, w = ε, is triv-
ial. For the inductive step, let wx ∈ pref(L(G)). From the induction hypoth-
esis, w ∈ pref(L{{C (G, p)}}p∈P). It suffices to show that the transition labeled
with x is enabled for the active role in x. Let (s⃗, ξ) denote the {{C (G, p)}}p∈P
configuration reached on w. In the case that x ∈ Σ!, let x = p ▷ q!m. The
existence of an outgoing transition

p▷q!m−−−−→ from s⃗p follows from the fact that
L(C (G, p)) = L(G)⇓Σp

(Lemma 4.3). The fact that wx ∈ pref(L{{C (G, p)}}p∈P)
follows immediately from this and the fact that send transitions in a CSM are
always enabled. In the case that x ∈ Σ?, let x = q◁p?m. We obtain an outgoing
transition

q◁p?m−−−−→ from s⃗p analogously. We additionally need to show that ξ(q, p)
contains m at the head. This follows from [31, Lemma 20] and the induction
hypothesis. This concludes our proof of prefix set inclusion.
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Let w be a word in L(G). Let (s⃗, ξ) denote the {{C (G, p)}}p∈P configura-
tion reached on w. In the case that w is finite, all states in s⃗ are final from
Lemma 4.3 and all channels in ξ are empty from the fact that all send events in
w contain matching receive events. In the case that w is infinite, we show that
w has an infinite run in {{C (G, p)}}p∈P using König’s Lemma. We construct an
infinite graph Gw(V,E) with V := {vρ | trace(ρ) ≤ w} and E := {(vρ1

, vρ2
) |

∃ x ∈ Σasync . trace(ρ2) = trace(ρ1) · x}. Because {{C (G, p)}}p∈P is determin-
istic, Gw is a tree rooted at vε, the vertex corresponding to the empty run. By
König’s Lemma, every infinite tree contains either a vertex of infinite degree or a
ray. Because {{C (G, p)}}p∈P consists of a finite number of communicating state
machines, the last configuration of any run has a finite number of next config-
urations, and Gw is finitely branching. Therefore, there must exist a ray in Gw

representing an infinite run for w, and thus w ∈ L({{C (G, p)}}p∈P). ⊓⊔

C Additional Material for §6

The definition MB,T
(G...) computes the set of available messages on the syntax of

global types and follows the one by Majumdar et al. [31, Sec. 2.2]. For their
proofs, they introduce another version, which computes these sets on the seman-
tics of the global type using a concept called blocked languages. In Lemma 37,
they prove the syntactic version always yields a superset of the semantic version.
The proof easily generalizes to equality. Therefore, we use MB,T

(-...) in our proofs
and refer to their work for details.

Corollary C.1 (Intersection sets are invariant under ∼). Let G be a
global type. Let w,w′ ∈ Σ∗

async and w ∼ w′. Then, I(w) = I(w′).

Proof. It follows immediately from w ∼ w′ that

∀p ∈ P. w⇓Σp
= w′⇓Σp

By the definition of I,

∀ρ. ρ ∈ I(w) ⇔ ∀p ∈ P. w⇓Σp
≤ split(trace(ρ))⇓Σp

Let ρ be a run in GAut(G). Then,

ρ ∈ I(w) ⇔ ∀p ∈ P. w⇓Σp
≤ split(trace(ρ))⇓Σp

⇔ ∀p ∈ P. w′⇓Σp
≤ split(trace(ρ))⇓Σp

⇔ ρ ∈ I(w′)

⊓⊔

Proposition C.2 (Structural properties of MB
(G...)). Let B ⊆ P and let G

be a syntactic subterm of G. Let q ▷ p!m ∈ MB
(G...). Then, it holds that:
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(1) MB
(G...) does not contain any events whose active role is blocked:

∀ p ∈ B. MB
(G...) ∩Σp = ∅

(2) There exists a run suffix β such that:
i. G · β is the suffix of a maximal run in GAut(G),
ii.

q−→p:m−−−−−→ occurs in β, and
iii. B monotonically increases during the computation of MB

(G...)

Proof. Immediate from the definition of available messages in [31, Sec. 2.2].

Proposition C.3 (Correspondence between unique splittings and local
states). Let G be a global type, and {{C (G, p)}}p∈P be the subset construction for
each role. Let w be a trace of {{C (G, p)}}p∈P , and (s⃗, ξ) be the CSM configuration
reached on w. Let p be a role. Then, it holds that:⋃

ρ∈RG
p (w)

{G | α ·G l−→ G′ · β is the unique splitting of ρ matching w} ⊆ s⃗p

Proof. Let ρ be a run in RG
p (w), and let α · G l−→ G′ · β be its unique split-

ting for p matching w. It follows from the definition of unique splitting that
split(trace(α · G′))⇓Σp

= w⇓Σp
. From the subset construction, there exists a

run s1, . . . , sn in C (G, p) such that s1 = s0,p and s1
w⇓Σp−−−→∗ sn. By the defini-

tion of Qp, we know that sn contains all global syntactic subterms in G that are

reachable via q0,G
w⇓Σp−−−→ ε−→∗ in GAut(G)↓, of which G is one. Hence, G ∈ sn.

By assumption, C (G, p) reached state s⃗p on w⇓Σp
. Because subset constructions

are deterministic, it follows that sn = s⃗p. We conclude that G ∈ s⃗p. ⊓⊔

Proposition C.4 (No send transitions from final states in subset pro-
jection). Let G be a global type, and P(G, p) be the subset projection for p.
Let s ∈ Fp, and s

x−→ s′ ∈ δp. Then, x ∈ Σp,?.

Proof. Assume by contradiction that x ∈ Σp,!. We instantiate Send Validity with
s

x−→ s′ to obtain:
x ∈ Σp,! =⇒ tr-orig(s

x−→ s′) = s

By the definition of tr-orig(-), for every syntactic subterm G ∈ tr-orig(s
x−→ s′):

∃G′ ∈ s′. G
x−→∗ G′ ∈ δ↾Σp

Because s is a final state in P(G, p), by definition it must contain a syntactic
subterm that is a final state in GAut(G)↾p. Because GAut(G)↾p and GAut(G)
share the same set of final states 4.1, s must contain a syntactic subterm that
is a final state in GAut(G). Let G0 denote this final state. By the structure of
GAut(G), there exists no outgoing transition from G0. Therefore, G′ does not
exist. We reach a contradiction. ⊓⊔
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Definition C.5 (G-complete words of {{Ap}}p∈P). Let G be a global type,
{{Ap}}p∈P be a CSM, and w be a trace of {{Ap}}p∈P . We say w is G-complete if
for all roles p and for all runs ρ ∈

⋂
p∈P RG

p (w),

w⇓Σp
=

(
split(trace(ρ))

)
⇓Σp

.

Definition C.6 (Channel-compliant [31]). A word w ∈ Σ∞ is channel-
compliant if for every prefix w′ ≤ w and every p, q ∈ P, V(w′⇓q◁p?_) ≤ V(w′⇓p▷q!_).

Lemma 6.4. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let wx be a trace of {{P(G, p)}}p∈P such that x ∈ Σ?. Then, I(w) = I(wx).

Proof. Let x = p ◁ q?m. Because wx is a trace of {{P(G, p)}}p∈P , there exists a
run (s⃗0, ξ0)

w−→∗ (s⃗, ξ)
x−→ (s⃗ ′, ξ′) such that m is at the head of ξ(p, q).

We assume that I(w) is non-empty; if I(w) is empty then I(wx) is trivially
empty. To show I(w) = I(wx), it suffices to show the following claim.
Claim 1 : It holds that RG

p (w) ∩ RG
q (w) = RG

p (wx) ∩ RG
q (wx).

We first show Claim 1’s sufficiency for I(w) = I(wx): By definition, I(w) =⋂
r∈P RG

r (w) ⊆ RG
q (w)∩RG

p (w). With Claim 1, it holds that I(w) ⊆ RG
q (wx)∩

RG
p (wx). From this, it follows that I(w) ⊆ RG

p (wx) (H1). Since p is the active
role for the receive event x, i.e. x ∈ Σp, it holds for any r ̸= p, that (wx)⇓Σr

=

w⇓Σr
and RG

r (w) = RG
r (wx) (H2). Again, by definition of RG

- (-), it holds that
RG
p (wx) ⊆ RG

p (w) (H3).
We apply the observations to I(wx):

I(wx) =
⋂
r∈P

RG
r (wx)

(H2)
= RG

p (wx) ∩
⋂

r∈P∧r̸=p

RG
r (w)

(H3)
= RG

p (wx) ∩ RG
p (w) ∩

⋂
r∈P∧r̸=p

RG
r (w)

= RG
p (wx) ∩ I(w)

(H1)
= I(w) .

Proof of Claim 1: We instantiate (H2) for role q, which yields RG
q (wx) = RG

q (w).
The proof of Claim 1 therefore amounts to showing:

RG
p (w) ∩ RG

q (w) = RG
p (wx) ∩ RG

q (w) .

The right direction, i.e., RG
p (wx) ⊆ RG

p (w), follows from (H3). For the left
direction, i.e., RG

p (w) ∩ RG
q (w) ⊆ RG

p (wx), assume by contradiction that there
exists a run ρ0 such that

ρ0 ∈ RG
p (w) ∧ ρ0 ∈ RG

q (w) ∧ ρ0 /∈ RG
p (wx) .
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Let ρ′ be a run in RG
p (w) \RG

p (wx). Let α′ ·G′
pre

l′−→ G′
post · β′ be the unique

splitting of ρ′ for p matching w.
Let ρ′p denote the largest consistent prefix of ρ′ for p; it is clear that ρ′p =

α′ ·G′
pre. Formally,

ρ′p = max{ρ | ρ ≤ ρ′ ∧
(
split(trace(ρ))

)
⇓Σp

≤ w⇓Σp
} .

Let ρ′q be defined analogously.
We claim that q is ahead of p in ρ′, i.e. ρ′p < ρ′q. Intuitively, this claim follows

from the half-duplex property of CSMs and the fact that q is the sender. For-
mally, Lemma 19 in [31] implies ξ(q, p) = u where V(w⇓q▷p!_) = V(w⇓p◁q?_).u.
Because ξ(q, p) contains at least m by assumption, |V(w⇓q▷p!_)| > |V(w⇓p◁q?_)|.
Because V(w⇓p◁q?_) < V(w⇓q▷p!_) and traces of CSMs are channel-compliant
(Lemma 19, [31]), it holds that ρ′q contains all |V(w⇓p◁q?_)| transition labels of
the form q −→ p : - that are contained in ρ′q, plus at least one more of the form
q −→ p : m. Because both ρ′p and ρ′q are prefixes of ρ′, it must be the case that
ρ′p < ρ′q. This concludes the proof of the above claim.

By assumption, ρ′ /∈ RG
p (wx) and therefore l′ ̸= q −→ p : m. By the definition

of unique splittings, p must be the active role in l′; by Corollary 5.5, p must be
the receiving role in l′. In other words, l′ must be of the form r −→ p : m′, where
either r ̸= q or m′ ̸= m.
Case: r = q and m′ ̸= m.

We discharge this case by showing a contradiction to the assumption that m
is at the head of the channel between q and p.

Because α′ · G′
pre ≤ ρ′p and ρ′p < ρ′q from the claim above, it must be the

case that α′ ·G′
pre

l′−→ G′
post ≤ ρ′q and q ▷ p!m′ is in w⇓Σq

. From Lemma 19 [31],
it follows that V(w⇓q▷p!_) = V(w⇓p◁q?_).m

′.u′ and ξ(q, p) = m′.u′, i.e. m′ is at
the head of the channel between q and p. This contradicts the assumption that
m is at the head of ξ(p, q).
Case: r ̸= q.

We discharge this case by showing a contradiction to Receive Validity. We
instantiate Receive Validity with s⃗p

x−→ s⃗ ′
p to obtain

∀ s⃗p
p◁q2?m2−−−−−→ s2 ∈ δp. q ̸= q2 =⇒ ∀G2 ∈ tr-dest(s⃗p

p◁q2?m2−−−−−→ s2). q▷p!m /∈ Mp

(G2...)
.

We prove the negation, stated as follows:

q ̸= r ∧ ∃ s2 ∈ Qp, G2 ∈ tr-dest(s⃗p
p◁r?m′

−−−−→ s2). q ▷ p!m ∈ Mp

(G2...)
.

The left conjunct follows immediately. From the existence of ρ′ and Lemma

4.3, there exists an s2 such that s⃗p
p◁r?m′

−−−−→ s2 ∈ δp. The fact that G′
post ∈

tr-dest(s⃗p
p◁r?m′

−−−−→ s2) is trivial from the unique splitting of ρ′ for p matching w:

ρ′ = α′ ·G′
pre

r−→p:m′

−−−−−→ G′
post · β′ .
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Therefore, all that remains is to show that q ▷ p!m ∈ Mp

(G′
post ...)

. Because

ρ′ ∈ RG
q (w) and α′ ·G′

pre
l′−→ G′

post ≤ ρ′q, where q is not the active role in l′, there
must exist a transition labeled q −→ p : m that occurs in the suffix G′

post ·β′ of ρ′.

Let G0
q−→p:m−−−−−→ G′

0 be the earliest occurrence of such a transition in the suffix,
then:

ρ′q = α′ ·G′
pre

l′−→ G′
post . . . G0

q−→p:m−−−−−→ G′
0 . . . .

Note that G0 must be a syntactic subterm of G′
post . In order for q ▷ p!m ∈

M
p

(G′
post ...)

. to hold, it suffices to show that q /∈ B in the recursive call to MB
(G0... )

.
We argue this from the definition of M and the fact that ρ′p = α′ · G′

pre.
Suppose for the sake of contradiction that q ∈ B. Because M only adds receivers
of already blocked senders to B and Mp

(G′
post ...)

starts with B = {p}, there must
exist a chain of message exchanges si+1 −→ si : mi in G′

post with 1 ≤ i < n,
p = sn, and q = s1. That is, G′

post · β′ must be of the form

G′
post . . . Gn−1

p−→sn−1:mn−1−−−−−−−−−−→ G′
n−1 . . . G1

s2−→q:m1−−−−−−→ G′
1 . . . G0

q−→p:m−−−−−→ G′
0 . . . .

Let m0 = m and s0 = p. We show by induction over i that for all i ∈ [1, n]

α′ ·G′
pre

l′−→ G′
post . . . Gi

si−→si−1:mi−1−−−−−−−−−−→ G′
i ≤ ρ′si .

We then obtain the desired contradiction with the fact that ρ′sn = ρ′p = α′ ·G′
pre .

The base case of the induction follows immediately from the construction.
For the induction step, assume that

α′ ·G′
pre

l′−→ G′
post . . . Gi

si−→si−1:mi−1−−−−−−−−−−→ G′
i ≤ ρ′si .

From the definition of ρ′si and the fact that si is the active role in si ◁ si+1?mi,
it follows that si ◁ si+1?mi ∈ w. Hence, we must also have si+1 ▷ si!mi ∈ w.
Since si+1 is the active role in si+1 ▷ si!mi, we can conclude

α′ ·G′
pre

l′−→ G′
post . . . Gi

si+1−→si:mi−−−−−−−−→ G′
i+1 ≤ ρ′si+1

.

⊓⊔
Lemma 6.6. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let wx be a trace of {{P(G, p)}}p∈P such that x ∈ Σ! ∩Σp for some p ∈ P. Let
ρ be a run in I(w), and α · G l−→ G′ · β be the unique splitting of ρ for p with
respect to w. Then, there exists a run ρ′ in I(wx) such that α ·G ≤ ρ′.

Proof. Let x = p ▷ q!m. We prove the claim by induction on the length of w.

Base Case. w = ε. By definition, I(ε) contains all maximal runs in GAut(G),
and the unique splitting prefix of any run ρ ∈ I(ε) for p with respect to ε is ε.
Because ε is a prefix of any run, we need only show the non-emptiness of I(x). By
4.3, L(G)⇓Σp

= L(P(G, p)). Because x is the prefix of a word in L(P(G, p)),
there exists w′ ∈ L(G) such that x ≤ w′⇓Σp

. By the semantics of L(G), there
exists a run ρ′ ∈ GAut(G) such that x is the first symbol in split(trace(ρ′))⇓Σp

,
and therefore ρ′ ∈ I(x).
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Induction Step. Let wx be an extension of w by x ∈ Σ!.
Let ρ be a run in I(w), and let α ·G l−→ G′ · β be the unique splitting of ρ for

role p with respect to w. To re-establish the induction hypothesis, we need to
show the existence of a run ρ̄ in I(wx) such that α ·G ≤ ρ̄. Since p is the active
role in x, it holds for any r ̸= p that RG

r (w) = RG
r (wx). Therefore, to prove the

existential claim, it suffices to construct a run ρ̄ that satisfies:

1. ρ̄ ∈ RG
p (wx),

2. ρ̄ ∈ I(w), and
3. α ·G ≤ ρ̄.

In the case that l⇓Σp
= x, we are done: Property 3 and 2 hold by construction,

and Property 1 holds by the definition of possible run sets. In the case that
l⇓Σp

̸= x, we show the existence of a transition label and state l̄−→ Ḡ′, and a

maximal suffix β̄ such that α ·G l̄−→ Ḡ′ · β̄ satisfies all three conditions.
Let (s⃗w, ξw) denote the CSM configuration reached on w: (s⃗0, ξ0)

w−→∗ (s⃗w, ξw)
Send Validity states that every transition in s⃗w,p originates in all global states
in s⃗w,p. By assumption, p ▷ q!m is a transition in s⃗w,p. By Proposition C.3,
ρ ∈ I ⊆ RG

p (w), and therefore G ∈ s⃗w,p. Therefore, Send Validity gives the

existence of some Ḡ′ ∈ QGAut(G) such that G
p−→q:m−−−−−→ Ḡ′ ∈ δGAut(G). Because α·G

is a run in GAut(G) and G
p−→q:m−−−−−→ Ḡ′ is a transition in GAut(G), α·G p−→q:m−−−−−→ Ḡ′

is a run in GAut(G).
The construction thus far satisfies Property 1 and 3 regardless of our choice of

maximal suffix: for all choices of β̄ such that α·G p−→q:m−−−−−→ Ḡ′ ·β̄ is a maximal run,
wx⇓Σp

≤ split(trace(α ·G p−→q:m−−−−−→ Ḡ′ · β̄))⇓Σp
and α ·G ≤ α ·G p−→q:m−−−−−→ Ḡ′ · β̄.

Property 2, however, requires that the projection of w onto each role is con-
sistent with ρ̄, and this cannot be ensured by the prefix alone.

We construct the remainder of ρ̄ by picking an arbitrary maximal suffix
to form a candidate run, and iteratively performing suffix replacements on the
candidate run until it lands in I. Let β̄ be a run suffix such that α·G p−→q:m−−−−−→ Ḡ′·β̄
is a maximal run in GAut(G). Let ρc denote our candidate run α·G p−→q:m−−−−−→ Ḡ′ ·β̄.
If ρc ∈ I, we are done. Otherwise, ρc /∈ I and there exists a non-empty set of
processes S ⊆ P such that for each r ∈ S,

w⇓Σr
≰ split(trace(ρc))⇓Σr

. (1)

By the fact that ρ ∈ I,

w⇓Σr
≤ split(trace(ρ))⇓Σr

. (2)

We can rewrite (1) and (2) above as:

w⇓Σr
≰ split(trace(α ·G p−→q:m−−−−−→ Ḡ′ · β̄))⇓Σr

(3)

w⇓Σr
≤ split(trace(α ·G l−→ G′ · β))⇓Σr

. (4)
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By the definition of unique splitting, p is the active role in l. By Lemma 4.3,
L(G)⇓Σp

= L(P(G, p)), and because split(trace(ρ)) ∈ L(G), it holds that
split(trace(ρ))⇓Σp

∈ L(G)⇓Σp
, and split(trace(ρ))⇓Σp

∈ L(P(G, p)). By
assumption, P(G, p) is in state s⃗w,p upon consuming w⇓Σp

. Then, there must
exist an outgoing transition from s⃗w,p labeled with split(l)⇓Σp

. By No Mixed
Choice (Corollary 5.5), all outgoing transitions from s⃗w,p must be send actions.
Therefore, l must be of the form p→q′ :m′. By assumption, q′ ̸= q ∨m′ ̸= m.

We can further rewrite (3) and (4) to make explicit their shared prefix:

w⇓Σr
≰ (split(trace(α ·G)). p ▷ q!m. q ◁ p?m. split(trace(β̄)))⇓Σr

(5)
w⇓Σr

≤ (split(trace(α ·G)). p ▷ q′!m′. q′ ◁ p?m′. split(trace(β)))⇓Σr
(6)

It is clear that in order for both (5) and (6) to hold, it must be the case that
split(trace(α ·G))⇓Σr

≤ w⇓Σr
.

We formalize the point of disagreement between w⇓Σr
and ρc using an index

ir representing the position of the first disagreeing transition label in trace(ρc):

ir := max{i | split(trace(ρc[0..i− 1]))⇓Σr
≤ w⇓Σr

} .

Then, split(trace(ρc[ir]))⇓Σr
̸= ε and from (5) and (6) we know that ir >

2 ∗ |split(trace(α ·G))|.
We identify the role in S with the earliest disagreement in ρc: let r̄ be the

role with the smallest ir̄ in S. Let yr̄ denote split(trace(ρc[ir̄]))⇓Σr̄
.

Claim. yr̄ must be a send event.
Assume by contradiction that yr̄ is a receive event. We identify the symbol

in w that disagrees with yr̄: let w′ be the largest prefix of w such that w′⇓Σr̄
≤

split(trace(ρc)). By definition, w′⇓Σr̄
= split(trace(ρc[0..ir̄ − 1]))⇓Σr̄

. Let z
be the next symbol following w′ in w; then z ∈ Σr̄ and z ̸= yr̄. Furthermore, by
No Mixed Choice (5.5) we have that z ∈ Σ?.

By assumption, w′z ≰ split(trace(ρc[0..ir̄])). Therefore, any run that be-
gins with ρc[0..ir̄] cannot be contained in RG

r̄ (w′z), or consequently in I(w′z).
We show however, that I(w′z) must contain some runs that begin with ρc[0..ir̄].
From Lemma 6.4 for traces w′ and w′z, we obtain that I(w′) = I(w′z). There-
fore, it suffices to show that I(w′) contains runs that begin with ρc[0..ir̄].

Claim ∀w′′ ≤ w′. I(w′′) contains runs that begin with ρc[0..ir̄].
We prove the claim via induction on w′.
The base case is trivial from the fact that I(ε) contains all maximal runs.
For the inductive step, let w′′y ≤ w′.
In the case that y ∈ Σ?, from Lemma 6.4 I(w′′y) = I(w′′) and the witness

from I(w′′) can be reused.
In the case that y ∈ Σ!, let s be the active role of y and let ρ′ be a run

in I(w′′) beginning with ρc[0..ir̄] given by the inner induction hypothesis. Let

α′ · G′ l′−→ G′′ · β′ be the unique splitting of ρ′ for s with respect to w′′. If
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split(l′)⇓Σs
= y, then ρ′ can be used as the witness. Otherwise, split(l′)⇓Σs

̸=
y, and ρ′ /∈ RG

s (w′′y).
The outer induction hypothesis holds for all prefixes of w: we instantiate it

with w′′ and y to obtain:

∃ ρ′′ ∈ I(w′′y). α′ ·G′ ≤ ρ′′ .

Let is be defined as before; it follows that ρ′[is] = G′. It must be the case that
is > ir̄: if is ≤ ir̄, because ρc and ρ′ share a prefix ρc[0..ir̄] and w′′y ≤ w, s
would be the earliest disagreeing role instead of r̄.

Because is > ir̄, ρc[0..ir̄] = ρ′[0..ir̄] ≤ ρ′[0..is]. Because ρ′[0..is] = α′ ·G′ ≤ ρ′′,
it follows from prefix transitivity that ρc[0..ir̄] ≤ ρ′′, thus re-establishing the
induction hypothesis for w′′y with ρ′′ as a witness run that begins with ρc[0..ir̄].

This concludes our proof that I(w′) contains runs that begin with ρc[0..ir̄],
and in turn our proof by contradiction that yr̄ must be a receive event.

We can rewrite candidate run ρc as follows:

ρc = G0
l0−→ G1 . . . Gir̄

lir̄−→ Gir̄+1 . . . .

We have established that lir̄ must be a send event for r̄. We can reason from
Send Validity similarly to our construction of ρ̄’s prefix above, and conclude
that there exists a transition label and maximal suffix from Gir̄ such that the
resulting run no longer disagrees with w⇓Σr̄

. We update our candidate run ρc
with the correct transition label and maximal suffix, update the set of states
S ∈ P to the new set of roles that disagree with the new candidate run, and
repeat the construction above on the new candidate run until S is empty.

Termination is guaranteed in at most |w| steps by the fact that the number
of symbols in w that agree with the candidate run up to ir̄ must increase.

Upon termination, the resulting ρ̄ satisfies the final remaining property 3:
ρ̄ ∈ I. This concludes the proof of the inductive step, and consequently the
proof of the prefix-preservation of send transitions. ⊓⊔

Lemma 6.3. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Let w be a trace of {{P(G, p)}}p∈P . It holds that I(w) is non-empty.

Proof. We prove the claim by induction on the length of w.

Base Case. w = ε. The trace w = ε is trivially consistent with all maximal
runs, and I(w) therefore contains all maximal runs. By definition of G, language
L(G) is non-empty and at least one maximal run exists. Thus, I(w) is non-empty.

Induction Step. Let wx be an extension of w by x ∈ Σasync .
The induction hypothesis states that I(w) ̸= ∅. To re-establish the induction

hypothesis, we need to show I(wx) ̸= ∅. We proceed by case analysis on whether
x is a receive or send event.

Receive Case. Let x = p◁q?m. By Lemma 6.4, I(wx) = I(w). I(wx) ̸= ∅ follows
trivially from the induction hypothesis and this equality.
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Send Case. Let x = p ▷ q!m. By Lemma 6.6, there exists a run in I(wx) that
shares a prefix with a run in I(w). I(wx) ̸= ∅ again follows trivially. ⊓⊔

Lemma C.7. Let G be a global type and {{C (G, p)}}p∈P be the subset con-
struction. Let w be a trace of {{C (G, p)}}p∈P . If w is terminated, then w is
G-complete.

Proof. We prove the claim by contraposition and assume that w is not G-
complete. Then, there exists a run ρ ∈ I(w) and a non-empty set of roles S
such that for every r ∈ S, it holds that w⇓Σr

̸=
(
split(trace(ρ))

)
⇓Σr

(*).
Since w is a trace, we know there exists a run (s⃗0, ξ0)

w0−−→ . . .
wn−1−−−→ (s⃗n, ξn) of

{{C (G, p)}}p∈P such that w = w0 . . . wn−1. We need to show that there exists
(s⃗n+1, ξn+1) with (s⃗n, ξn)

wn−−→ (s⃗n+1, ξn+1) for some wn. Given some role p, let
ρp denote the largest prefix of ρ that contains p’s local view of w. Formally,

ρp = max{ρ′ | ρ′ ≤ ρ ∧ split(trace(ρ′))⇓Σp
= w⇓Σp

} .

Note that due to maximality, the next transition in ρ after ρp must have p

as its active role. Let q be the role in S for whom ρq is the smallest. From
Lemma 4.3 and (*), it follows that s⃗n,q has outgoing transitions. If qn,q has
outgoing send transitions, then (qn+1, ξn+1) exists trivially. If qn,q has outgoing
receive transitions, it must be the case that the next transition in ρ after ρq is
of the form p→ q :m for some p and m. From the fact that q is the role with
the smallest ρq, we know that ρq < ρp, and from the FIFO property of CSM
channels it follows that m is in ξn(p, q). Then, the receive transition is enabled
for q, and there exists (s⃗n+1, ξn+1) with (s⃗n, ξn)

p◁p?m−−−−→ (s⃗n+1, ξn+1). This shows
that w = w1 . . . wn−1 is not terminated and concludes the proof. ⊓⊔

Lemma C.8. Let G be a global type and {{P(G, p)}}p∈P be the subset projec-
tion. Let w be a trace of {{P(G, p)}}p∈P . If w is G-complete, then w ∈ L(G).

Proof. By definition of w being G-complete,

∀p ∈ P, ρ ∈ I(w). w⇓Σp
=

(
split(trace(ρ))

)
⇓Σp

.

From Lemma 6.3, I(w) is non-empty. Let ρ be a run in I(w), and let w′ =
split(trace(ρ)) ∈ L(G). By the semantics of L(G), L(G) is closed under the
∼ relation, and thus it suffices to show that w ∼ w′. [31, Lemma 23] states
that if w is channel-compliant [31, Definition 19], then w ∼ w′ iff w′ is channel-
compliant and forall p ∈ P, w⇓Σp

= w′⇓Σp
. The fact that w is channel-compliant

follows from [31, Lemma 20] and w being a a CSM trace; w′ is channel-compliant
by construction, and the last condition is satisfied by assumption that w is G-
complete and by definition of w′. Thus, we conclude that w ∼ w′. ⊓⊔

Theorem 6.1. Let G be a global type and {{P(G, p)}}p∈P be the subset projec-
tion. Then, {{P(G, p)}}p∈P implements G.
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Proof. First, we show that {{P(G, p)}}p∈P is deadlock-free, namely, that every
finite trace extends to a maximal trace. Let w be a trace of {{P(G, p)}}p∈P . Let
w′ denote the extension of w. If w′ ∈ Σω

async , then w′ is maximal and we are
done. Otherwise, we have w′ ∈ Σ∗

async . Let (s⃗ ′, ξ′) denote the {{P(G, p)}}p∈P
configuration reached on w′. By definition of w′ being the largest extension, w′

is a terminated trace, and there exists no configuration reachable from (s⃗ ′, ξ′).
By Lemma C.7, w′ is G-complete. By Lemma C.8, w′ ∈ L(G). Therefore, all
states in s⃗ ′ are final and all channels in ξ are empty, and w′ is a maximal trace
in {{P(G, p)}}p∈P .

This concludes our proof that {{P(G, p)}}p∈P is deadlock-free.
Next, we show that L({{P(G, p)}}p∈P) = L(G). The backward direction,

L(G) ⊆ L({{P(G, p)}}p∈P), is given by Lemma 4.4. For the forward direction,
let w ∈ L({{P(G, p)}}p∈P), and let (s⃗, ξ) denote the configuration reached on w.
We proceed by case analysis on whether w is a finite or infinite maximal trace.

Case: w ∈ Σ∗
async . We show a stronger property: w is a terminated trace. Then,

we use Lemma C.7 and Lemma C.8 as above to obtain w ∈ L(G). By definition of
(s⃗, ξ) being final, all states in s⃗ are final and all channels in ξ are empty. We argue
there does not exist a configuration reachable from (s⃗, ξ). From Proposition C.4,
all outgoing states from states in s⃗ must be receive transitions. However, no
receive transitions are enabled because all channels in ξ are empty. Therefore,
(s⃗, ξ) is a terminated configuration and w is a terminated trace.

Case: w ∈ Σω. By the semantics of L(G), to show w ∈ L(G) it suffices to show:

∃w′ ∈ Σω. w′ ∈ split(L(GAut(G))) ∧ w ⪯ω
∼ w′ .

Claim.
⋂

u≤w I(u) contains an infinite run.
First, we show that there exists an infinite run in GAut(G). We apply König’s

Lemma to an infinite tree where each vertex corresponds to a finite run. We
obtain the vertex set from the intersection sets of w’s prefixes; each prefix “con-
tributes” a set of finite runs. Formally, for each prefix u ≤ w, let Vu be defined
as:

Vu :=
⋃

ρu∈I(u)

min{ρ′ | ρ′ ≤ ρu ∧ ∀p ∈ P. u⇓Σp
≤ split(trace(ρ′))⇓Σp

} .

By Lemma 6.3, Vu is guaranteed to be non-empty. We construct a tree Tw(V,E)
with V :=

⋃
u≤w Vu and E := {(ρ1, ρ2) | ρ1 ≤ ρ2}. The tree is rooted in the

empty run, which is included V by Vε. V is infinite because there are infinitely
many prefixes of w. Tw is finitely branching due to the finiteness of δG and the
fact that each vertex represents a finite run. Therefore, there must exist a ray
in Tw representing an infinite run in GAut(G).

Let ρ′ be such an infinite run. We now show that ρ′ ∈
⋂

u≤w I(u). Let v be
a prefix of w. To show that ρ′ ∈ I(v), it suffices to show that one of the vertices
in Vv lies on ρ′. In other words,

Vv ∩ {v | v ∈ ρ′} ≠ ∅ .
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Assume by contradiction that ρ′ passes through none of the vertices in Vv. Then,
for any u′ ≥ u, because intersection sets are monotonically decreasing, it must
be the case that ρ′ passes through none of the vertices in V ′

u. Therefore, ρ′ can
only pass through vertices in V ′′

u , where u′′ ≤ u. However, the set
⋃

u′′≤u V
′′
u has

finite cardinality. We reach a contradiction, concluding our proof of the above
claim.

Let ρ′ ∈
⋂

u≤w I(u), and let w′ = split(trace(ρ′)). It is clear that w′ ∈
Σω

async and w′ ∈ split(L(GAut(G))). It remains to show that w ⪯ω
∼ w′. By the

definition of ⪯ω
∼, it further suffices to show that:

∀u ≤ w, ∃u′ ≤ w′, v ∈ Σ∗. uv ∼ u′ .

Let u be an arbitrary prefix of w. Because by definition ρ′ ∈ I(u), it holds that
u⇓Σp

≤ split(trace(ρ′))⇓Σp
.

For each role p ∈ P, let ρ′p be defined as the largest prefix of ρ′ such that
split(trace(ρ′p))⇓Σp

= u⇓Σp
. Such a run is well-defined by the fact that u is a

prefix of an infinite word w, and there exists a longer prefix v such that u ≤ v
and v⇓Σp

≤ split(trace(ρ′))⇓Σp
.

Let s be the role with the maximum |ρ′s| in P. Let u′ = split(trace(ρ′s)).
Clearly, u′ ≤ w′. Because u′ is split(trace(ρ′s)) for the role with the longest ρ′s,
it holds for all roles p ∈ P that u⇓Σp

≤ u′⇓Σp
. Then, there must exist yp ∈ Σp

∗

such that
u⇓Σp

· yp = u′⇓Σp
.

Let yp be defined in this way for each role. We construct v ∈ Σ∗ such that
uv ∼ u′. Let v be initialized with ε. If there exists some role in P such that
yp[0] ∈ Σp,!, append yp to v and update yp. If not, for all roles p ∈ P, yp[0] ∈ Σp,?.
Each symbol yp[0] for all roles appears in u′. Let ip denote for each role the
index in u′ such that u′[i] = yp[0]. Let r be the role with the minimum index
ir. Append yr to v and update yr. Termination is guaranteed by the strictly
decreasing measure of

∑
p∈P |yp|.

We argue that uv satisfies the inductive invariant of channel compliancy. In
the case where v is extended with a send action, channel compliancy is triv-
ially re-established. In the receive case, channel compliancy is re-established by
the fact that the append order for receive actions follows that in u′, which is
channel-compliant by construction. We conclude that uv ∼ u′ by applying [31,
Lemma 22]. ⊓⊔

D Additional Material for §7

Lemma D.1. Let p be a role, G be a global type, G′ be a syntactic subterm
of G, and {{C (G, p)}}p∈P be its subset construction. Let s be some state in Qp

with G′ ∈ s. Then, there is a run ρG in GAut(G) ending in state q′G, i.e.

ρG = q0,G
trace(ρG)−−−−−−→∗ q′G,
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such that C (G, p) will reach s on the projected trace, i.e.,

ρp = s0,p
split(trace(ρG))⇓Σp−−−−−−−−−−−−−→∗ s.

Proof. Recall that the set of states for C (G, p) is defined as a least fixed point:

Qp := lfp⊆{s0,p}λQ.Q ∪ {δ(s, a) | s ∈ Q ∧ a ∈ Σp} \ {∅}

where δ(s, a) is an intermediate transition relation that is defined for all subsets
s ⊆ QG and every event a ∈ Σp as follows:

δ(s, a) := {q′ ∈ QG | ∃q ∈ s, q
a−→ ε−→∗ q′ ∈ δ↓}

From the definition of Qp, there exists a sequence of states s1, . . . , sn such that
s1 = s0,p, sn = s and for every i ∈ {1, . . . , n− 1}, it holds that

∃a ∈ Σp. δ(si, a) = si+1

Let ai denote the existential witness for each i. From the definition of δ(s, a),
for every i ∈ {1, . . . , n− 1}, it follows that

∀q′ ∈ si+1. ∃q ∈ si. q
ai−→ ε−→∗ q′ ∈ δ↓

By assumption, G′ ∈ s. There then exists a sequence of global syntactic subterms
G1, . . . , Gn such that G1 = G, Gn = G′ and for every i ∈ {1, . . . , n−1}, it holds
that

Gi ∈ si ∧Gi+1 ∈ si+1 ∧Gi
ai−→ ε−→∗ Gi+1 ∈ δ↓

We can expand ε∗: for every i ∈ {1, . . . , n−1}, there exists ki ≥ 0 and a sequence
of syntactic subterms Gi,0, . . . , Gi,ki

such that Gi,0 = Gi and Gi,ki
= Gi+1 and

Gi,0
a−→ Gi,1 ∈ δ↓ and Gi,j

ε−→ Gi,j+1 ∈ δ↓ for every j ∈ {1, ki − 1}.

This expansion yields a run ρ↓ in the projection by erasure GAut(G)↓p. Because
of recursion terms, the expansion might not be unique, but we can pick the
smallest ki possible for every i. With the definition of δ↓, it is trivial to translate
this run in GAut(G)↓p to a run ρG in GAut(G): the events a ∈ Σp become
a′ ∈ Σsync such that split(a′)⇓Σp

= a and ε becomes b ∈ Σsync such that
split(b)⇓Σp

= ε.
It is clear by construction that s1, . . . , sn (with its corresponding transitions)

serves as a witness for ρp, while G1,0, . . . , G1,k1
, . . . , Gn (with its respective tran-

sitions) serves as a witness for ρG. ⊓⊔

Lemma D.2. Let G be a global type and let {{Bp}}p∈P implement G with Bp =

(QB,p, δB,p, sB,0,p, FB,0,p) for role p. Let s ∈ Qp, x ∈ Σp and s
x−→ t ∈ δp from

the subset construction C (G, p). Let u ∈ Σp
∗ such that s0,p

u−→∗ s. Then, there
exists s′, t′ ∈ QB,p such that sB,0,p

u−→∗ s′ and s′
x−→ t′ ∈ δB,p.
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Proof. Because {{Bp}}p∈P implements G, it must hold that L(G)⇓Σp
⊆ L(Bp)

since Bp must produce at least the behaviors as specified by G for its role. It
follows that pref(L(G)⇓Σp

) ⊆ pref(L(Bp)). From Lemma 4.3, we know that
L(G)⇓Σp

= C (G, p). By construction of C (G, p), if ux is reachable from the
initial state in C (G, p) then ux is the prefix of some word in L(G)⇓Σp

. Therefore,
it holds that ux ∈ pref(L(G)⇓Σp

) and consequently ux ∈ pref(L(Bp)). Because
Bp is deterministic, there exists a unique t′ such that Bp reaches t′ from the
initial state on ux. This concludes our proof.

Theorem 7.1 (Completeness). If G is implementable, then {{P(G, p)}}p∈P
is defined.

Proof. From the fact that G is implementable, we know there exists a CSM
{{Bp}}p∈P that implements G. Showing that the subset projection is defined
amounts to showing that Send and Receive Validity (Definitions 5.2 and 5.3)
hold for the subset construction.

We proceed by contradiction and assume the negation of Send and Receive
Validity in turn, and in each case derive a contradiction to the fact that {{Bp}}p∈P
implements G. Specifically, we contradict protocol fidelity (Definition 3.1(i)), and
show that L(G) ̸= L({{Bp}}p∈P).

To prove the inequality of the two languages, it suffices to prove the inequality
of their respective prefix sets, i.e.

{u | u ≤ w ∧ w ∈ L(G)} ≠ {u | u ≤ w ∧ w ∈ L({{Bp}}p∈P)}

Specifically, we show there is v ∈ Σ∗
async such that

v ∈ {u | u ≤ w ∧ w ∈ L({{Bp}}p∈P)} ∧
v /∈ {u | u ≤ w ∧ w ∈ L(G)} .

Because {{Bp}}p∈P is deadlock-free by assumption, every trace either can be
extended to end in a final configuration or to be infinite. Therefore, any word
v ∈ Σ∗

async that is a trace of {{Bp}}p∈P is a member of the prefix set, i.e.

∃ (s⃗, ξ). (s⃗0, ξ0)
v−→∗ (s⃗, ξ) =⇒ v ∈ {u | u ≤ w ∧ w ∈ L({{Bp}}p∈P)} .

By the semantics of L(G), for any w ∈ L(G), there exists w′ ∈ L(GAut(G))
with w ∼ split(w′). For any w′ ∈ L(GAut(G)), it is straightforward that
I(split(w′)) ̸= ∅. Because intersection sets are closed under the indistinguisha-
bility relation (Corollary C.1), it holds that I(w) ̸= ∅. Because I(-) is monotoni-
cally decreasing, if I(w) is non-empty then for any v ≤ w, I(v) is non-empty. By
the following, to show that a word v is not a member of the prefix set of L(G)
it suffices to show that I(v) is empty:

∀v ∈ Σ∗
async . I(v) = ∅ =⇒ ∀w. v ≤ w =⇒ w /∈ L(G) .

Therefore, under the assumption of the negation of Send or Receive Validity
respectively, we explicitly construct a witness v0 satisfying:
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(a) v0 is a trace of {{Bp}}p∈P , and
(b) I(v0) = ∅.

Send Validity (Definition 5.2). Assume that Send Validity does not hold for
some role p ∈ P. Let s ∈ Qp be a state and s

p▷q!m−−−−→ s′ ∈ δp a transition in the
subset construction C (G, p) such that

tr-orig(s
p▷q!m−−−−→ s′) ̸= s .

Let D denote s \ tr-orig(s p▷q!m−−−−→ s′). By the negation of Send Validity, D is
non-empty. Let G′ be a syntactic subterm in D.

Because G′ ∈ s, it follows from Lemma D.1 that there exists α such that α·G′

is a run in GAut(G). Let w̄ be split(trace(α · G′)). Because {{Bp}}p∈P imple-
ments G, there exists a configuration (⃗t, ξ) of {{Bp}}p∈P such that (⃗t0, ξ0)

w̄−→∗

(⃗t, ξ). Instantiating Lemma D.2 with s, s
p▷q!m−−−−→ s′ and split(trace(α ·G′))⇓Σp

,

it follows that t⃗p has an outgoing transition labeled p ▷ q!m. Let t⃗p
p▷q!m−−−−→ t′′ be

this transition.
The send transitions of any local machine in a CSM are always enabled.

Formally, for all w ∈ Σ∗
async , x ∈ Σ!, and r ∈ P, if w is a trace of {{Bp}}p∈P and

t⃗w,r
x−→ t⃗ ′w,r ∈ δr, then wx is a trace of {{Bp}}p∈P . Instantiating this fact with w̄

and t⃗p
p▷q!m−−−−→ t′′, we obtain that w̄ · p ▷ q!m is a trace of {{Bp}}p∈P .

Let w̄ ·p▷q!m be our witness v0; it then follows that v0 satisfies (a). It remains
to show that v0 satisfies (b), namely I(w̄ · p ▷ q!m) = ∅.

Claim. All runs in I(w̄) begin with α ·G′.
Proof of Claim. Recall that w̄ is defined as split(trace(α · G′)). Assume

by contradiction that ρ′ ∈ I(w̄) and ρ′ does not begin with α · G′. Due to the
syntactic structure of global runs, the first divergence between two runs must
correspond to a syntactic subterm of the form

∑
i∈I p

′ → q′i :m
′
i.G

′
i. Let p′ be

the sender in the first divergence between ρ′ and α · G′, and let the two runs
respectively contain the subterms G′

i and G′
j . Because ρ′ is in RG

p′ (w̄), it holds
that w̄⇓Σp′

≤ split(trace(ρ′))⇓Σp′
. Because w̄ = split(trace(α ·G′)), we can

rewrite the inequality as split(trace(α ·G′))⇓Σp′
≤ split(trace(ρ′))⇓Σp′

.
We know that split(trace(α · G′))⇓Σp′

and split(trace(ρ′))⇓Σp′
share a

common prefix, followed by different send actions from p′, i.e., they are respec-
tively of the form x′·p′▷qj !m′

j ·y′ and x′·p′▷qi!m′
i·z′. We arrive at a contradiction.

End Proof of Claim.
Recall that G′ ∈ D and D = s \ tr-orig(s

p▷q!m−−−−→ s′). By the definition of
tr-orig(−) (Definition 4.2), there does not exist a global syntactic subterm G′′

with G′ l′−→∗ G′′ ∈ δG such that l′⇓Σp
= p ▷ q!m. Therefore, there does not exist

a maximal run in RG
p (w̄ · p ▷ q!m), and I(w̄ · p ▷ q!m) = ∅ follows.

Our witness v0 = w̄ ·p▷q!m thus satisfies both conditions (a) and (b) required
for a contradiction. This concludes our proof that Send Validity is required to
hold.
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Receive Validity (Definition 5.3). Assume that Receive Validity does not
hold for some role p ∈ P. In other words, there exists s ∈ Qp with two transitions

s
p◁q1?m1−−−−−→ s1, s

p◁q2?m2−−−−−→ s2 ∈ δp and G2 ∈ tr-dest(s
p◁q2?m2−−−−−→ s2) such that

q1 ̸= q2 ∧ q1 ▷ p!m1 ∈ Mp

(G2...)
.

Claim I. There exists u ∈ Σ∗
async such that both u ·p◁q1?m1 and u ·p◁q2?m2

are traces of {{Bp}}p∈P .

Proof of Claim I. By the negation of Receive Validity, G2 ∈ tr-dest(s
p◁q2?m2−−−−−→

s2) ⊆ s2. From Lemma D.1 for s2 and G2 ∈ s2, there exists ρ′ such that ρ′ ends in
G2 and is a run in GAut(G). Because split(trace(ρ′)) is a prefix in L(G) and by
assumption {{Bp}}p∈P implements G, there exists a {{Bp}}p∈P configuration (⃗t, ξ)

such that (⃗t0, ξ0)
split(trace(ρ′))−−−−−−−−−−→∗ (⃗t, ξ). By the subset construction, it holds that

C (G, p) reaches s on split(trace(ρ′)). Instantiating Lemma D.2 twice with
s

p◁q1?m1−−−−−→ s1, s
p◁q2?m2−−−−−→ s2 and split(trace(ρ′))⇓Σp

, we obtain t1
p◁q1?m1−−−−−→ t′1

and t2
p◁q2?m2−−−−−→ t′2. From the determinacy of Bp, it holds that t1 = t2. Therefore,

it holds that t⃗p = t1 and there exist two outgoing transitions from t⃗p labeled
with p ◁ q1?m1 and p ◁ q2?m2.

From the fact that s
p◁q2?m2−−−−−→ s2 ∈ δp, there exist G1 ∈ s and G′

2 ∈
tr-dest(s

p◁q2?m2−−−−−→ s2) ⊆ s2 such that G1
q2−→p:m2−−−−−−→ G′

2 ∈ δG. Either G2 = G′
2,

or G2 is reachable from G′
2 via ε-transitions for p. Without loss of generality,

assume that G2 = G′
2; if G′

2 ̸= G2 then G′
2 can also be picked as the witness

from the definition of M . We rewrite ρ′ as follows:

ρ′ := α ·G1
q2−→p:m2−−−−−−→ G2

From the negation of Receive Validity, we know that

q1 ▷ p!m1 ∈ M
p

(G2...)

Then, there exists some suffix β such that the transition
q1−→p:m1−−−−−−→ occurs in

β and α ·G1
q2−→p:m2−−−−−−→ G2 · β is a maximal run. Let ρ denote this maximal run.

Let G3
q1−→p:m1−−−−−−→ G4 be the earliest occurrence of

q1−→p:m1−−−−−−→ in β. We rewrite the
suffix β in ρ to reflect the existence of G3, G4:

ρ := α ·G1
q2−→p:m2−−−−−−→ G2 · β1 ·G3

q1−→p:m1−−−−−−→ G4 · β2

Note that β1 does not contain any transitions of the form
q1−→p:m1−−−−−−→.

Let w̄ denote split(trace(α)), and v̄ denote split(trace(β1)). To produce
a witness for u, we show that w̄ · q2 ▷ p!m2 · q1 ▷ p!m1 is a trace of {{Bp}}p∈P ,
and in the resulting CSM configuration (s⃗ ′, ξ′), s⃗ ′

p has two outgoing transitions
labeled p ◁ q1?m1 and p ◁ q2?m2. Moreover, we show that the channels ξ′(q1, p)
and ξ′(q2, p) respectively contain the messages m1 and m2 at the head.
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First, we show that w̄ · q2 ▷ p!m2 · q1 ▷ p!m1 is a trace of {{Bp}}p∈P .
By assumption that {{Bp}}p∈P implements G, both w̄ · q2 ▷ p!m2 and w̄ · q2 ▷

p!m2 · p ◁ q2?m2 are traces of {{Bp}}p∈P . Let (s⃗ ′′, ξ′′) and (s⃗ ′′′, ξ′′′) respectively
denote {{Bp}}p∈P configurations such that

(s⃗0, ξ0)
w̄·q2▷p!m2−−−−−−−→ (s⃗ ′′, ξ′′)

p◁q2?m2·v̄−−−−−−→ (s⃗ ′′′, ξ′′′) .

Because send actions are always enabled in a CSM, it suffices to show that s⃗ ′′
q1

has an outgoing transition label q1 ▷ p!m1. We do so by showing that s⃗ ′′
q1

= s⃗ ′′′
q1

:
it is clear from the fact that w̄ · q2 ▷ p!m2 · p ◁ q2?m2 · v̄ · q1 ▷ p!m1 is a trace of
{{Bp}}p∈P that s⃗ ′′′

q1
has an outgoing transition label q1 ▷ p!m1.

Due to the determinacy of subset construction, it suffices to show that

(w̄ · q2 ▷ p!m2)⇓Σq1
= (w̄ · q2 ▷ p!m2 · p ◁ q2?m2 · v̄)⇓Σq1

.

This equality follows from the definition of M and the fact that q1 ▷ p!m1 ∈
Mp

(G2...)
: because the blocked set of roles in M monotonically increases, and for

any G′, B, no actions in a run suffix starting with G′ involving roles in B′ are
included in MB′

G′ , we know that q1 ▷ p!m1 must be the lexicographically earliest
action involving q1 in v̄ · q1 ▷ p!m1 · p ◁ q1?m1. In other words, v̄⇓Σq1

= ε.
This concludes the reasoning that w̄·q2▷p!m2 ·q1▷p!m1 is a trace of {{Bp}}p∈P .
Recall that (s⃗ ′, ξ′) is the {{Bp}}p∈P configuration reached on w̄ ·q2 ▷p!m2 ·q1 ▷

p!m1. We showed above that s⃗p has two outgoing transitions labeled p ◁ q1?m1

and p◁q2?m2. It follows from the equality below that s⃗ ′
p likewise has two outgoing

transitions labeled p ◁ q1?m1 and p ◁ q2?m2:

(w̄ · q2 ▷ p!m2)⇓Σp
= (w̄ · q2 ▷ p!m2 · q1 ▷ p!m1)⇓Σp

.

We now show that the channels ξ′(q1, p) and ξ′(q2, p) respectively contain the
messages m1 and m2 at the head. Recall that w̄ is defined as split(trace(α));
this from the fact that ξw̄ is uniquely determined by w̄ and all channels in ξw̄
are empty.

Let u := w̄·q2▷p!m2 ·q1▷p!m1. This concludes our proof that both u·p◁q1?m1

and u · p ◁ q2?m2 are traces of {{Bp}}p∈P .
End Proof of Claim I.
The next claim establishes that our witness u · p ◁ q1?m1 satisfies (b).
Claim II. It holds that I(u · p ◁ q1?m1) = ∅.
Proof of Claim II. This claim follows trivially from the observation that

every run in I(w̄ · q2 ▷ p!m2) must begin with α · G1
q2−→p:m2−−−−−−→ G2. Because

I(u · p ◁ q1?m1) ⊆ I(w̄ · q2 ▷ p!m2), and the split(trace(-)) of every run in
I(w̄ · q2 ▷ p!m2) starts with w̄ · q2 ▷ p!m2 · p ◁ q2?m2, therefore I(u · p ◁ q1?m1) is
empty.

End Proof of Claim II.
From here, the reasoning that every run in I(w̄ · q2 ▷ p!m2) must begin with

α · G1
q2−→p:m2−−−−−−→ G2 is identical to the reasoning for the analogous claim in the

Send Validity case, and thus omitted.
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By choosing v0 := ū · p ◁ q1?m1, we thus establish both conditions (a) and
(b) required for a contradiction. This concludes our proof that Receive Validity
is required to hold. ⊓⊔

E Additional Material for §10

E.1 Visual Representations of Gfold and Gunf

Figure 4 depicts the examples in §10 visually.

p q r

(a) Rejected by syntactic projection
operators

p q rp q r

(b) Partially unfolded and accepted
by syntactic projection operators

Fig. 4: Two protocol specifications for the same protocol

E.2 Entailed Properties from the Literature – Detailed Analysis

For systems with two roles, an unspecified reception [14, Def. 12] occurs if a
receiver cannot receive the first message in its (only) channel. Intuitively, this
yields a deadlock for a binary system or an execution in which the other role will
send messages indefinitely. For multi-party systems with sender-driven choice,
this is not necessarily the case and our receive validity condition ensures that a
message in a role’s channel can appear but will not confuse the receiver regarding
which choices were made. Thus, we could lift the property to multiparty systems
with a universal quantification over channels. Our subset projection would pre-
vent this lifted version of unspecified receptions because of deadlock freedom and
the fact that any non-deadlock configuration can be extended in a way that the
unspecified reception can eventually be received. Similarly, our subset projection
ensures the absence of orphan messages [21, Sec. 2] [9, Sec. 3]. However, we need
to adapt the definition to our setting. For most MST frameworks, the following
two types of CSM configurations are equivalent: final-state configurations, i.e.,
where each role is in a final state; and sink-state configurations, i.e., where each



44 E. Li, F. Stutz, T. Wies, D. Zufferey

role is in a state without outgoing transitions. Orphan messages have been de-
fined using final-state configurations. Our subset projection is more expressive
so both configuration types do not necessarily coincide. Our soundness proof
ensures the absence of orphan messages in sink-state configurations and ensures
that messages in final-state configurations can be received eventually. We refer
to §11 for a discussion on the expressiveness of local types and FSMs.

The standard notion of progress [18, Sec. 1] asks that every sent message is
eventually received and every process waiting for a message eventually receives
one. We proved our subset projection sound for finite as well as infinite CSM
runs. For finite runs, both properties trivially hold. For infinite runs, our subset
projection ensures that both is possible but one would require fairness assump-
tions to ensure that it will actually happen as is common for liveness properties.

In our subset projection, it is also guaranteed that each transition of a local
implementation can be fired in some execution of the subset projection. This is
called executable by Cécé and Finkel [14, Def. 12] while it is the property live in
work by Scalas and Yoshida [36, Fig.5(3)] and called liveness by Barbanera et
al. [7, Def. 2.9].

A CSM has the stable property if any reachable configuration has a transition
sequence to a configuration with empty channels. With our proof technique, we
showed every run of a CSM has a common path in the protocol that complies
with all participants’ local observations of the run. There is a furthest point in
this path and it is possible that all participants catch up to this point, having
empty channels.

Scalas and Yoshida [36] also consider two properties that are rather protocol-
specific than implementation-specific, i.e., protocol fidelity and deadlock freedom
trivially ensure that every implementation satisfies these properties if the pro-
tocol does. First, a global type is terminating [36, Fig.5(2)] if every CSM run
is finite. It is trivial that this is only true if there are no (used) recursion vari-
able binders µt. Second, a global type is never-terminating [36, Fig.5(3)] if every
CSM run is infinite. Consequently, this is only the case if the global type has no
term 0.
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