Complete Multiparty Session Type Projection with Automata

Elaine Li Felix Stutz Thomas Wies Damien Zufferey

Multiparty session types

MST semantics

Synchronous

MST implementability

Implementation model: communicating state machines (CSMs)

Implementability = protocol fidelity + deadlock freedom

1) CSM language = global type language

q!<u>o</u>,q!m

2) CSM is deadlock-free

Explaining the completeness gap

Explaining the completeness gap: odd-even example

(a) Odd-even protocol

(a) Odd-even protocol

(a) Odd-even protocol

Projection: Checking Implementability – Send

Projection: Checking Implementability – Receive

Completeness: Implementable \Rightarrow Projectable

Completeness: Implementable \Rightarrow Projectable

Corollary. Any implementable global type can be implemented without mixed choice.

Complexity

Theorem. The implementability problem for MSTs is PSPACE-complete. Proof idea for lower bound: reduction to checking universality of NFAs.

Prototype evaluation

Thank you!

Send transitions shrink the intersection set in a principled way

Send transitions shrink the intersection set in a principled way

Prototype evaluation

Source	Name	Impl.	Subset Proj.		Size	$ \mathcal{P} $	Size	[30]	
			(complete)				Proj's (incomplete)		
	Instrument Contr. Prot. A	1	1	$0.4\mathrm{ms}$	22	3	61	1	$0.2\mathrm{ms}$
[34]	Instrument Contr. Prot. B	1	1	$0.3\mathrm{ms}$	17	3	47	~	$0.1\mathrm{ms}$
	OAuth2	~	1	$0.1\mathrm{ms}$	10	3	23	~	$<\!0.1\mathrm{ms}$
[33]	Multi Party Game	\checkmark	1	$0.5\mathrm{ms}$	21	3	67	\checkmark	$0.1\mathrm{ms}$
[24]	Streaming	1	~	$0.2\mathrm{ms}$	13	4	28	1	$<\!0.1\mathrm{ms}$
[13]	Non-Compatible Merge	1	1	$0.2\mathrm{ms}$	11	3	25	1	$0.1\mathrm{ms}$
[45]	Spring-Hibernate	1	1	$1.0\mathrm{ms}$	62	6	118	\checkmark	$0.7\mathrm{ms}$
[30]	Group Present	~	1	$0.6\mathrm{ms}$	51	4	85	1	$0.6\mathrm{ms}$
	Late Learning	~	1	$0.3\mathrm{ms}$	17	4	34	~	$0.2\mathrm{ms}$
	Load Balancer $(n = 10)$	1	1	$3.9\mathrm{ms}$	36	12	106	1	$2.4\mathrm{ms}$
	Logging $(n = 10)$	1	1	$71.5\mathrm{ms}$	81	13	322	~	$10.0\mathrm{ms}$
[38]	2 Buyer Protocol	~	1	$0.5\mathrm{ms}$	22	3	60	\checkmark	$0.2\mathrm{ms}$
	2B-Prot. Omit No	~	1	$0.4\mathrm{ms}$	19	3	56	(\times)	$0.1\mathrm{ms}$
	2B-Prot. Subscription	~	~	$0.7\mathrm{ms}$	46	3	95	(\times)	$0.3\mathrm{ms}$
	2B-Prot. Inner Recursion	1	1	$0.4\mathrm{ms}$	17	3	51	~	$0.1\mathrm{ms}$
New	Odd-even (Example 2.1)	~	1	$0.5\mathrm{ms}$	32	3	70	(\times)	$0.2\mathrm{ms}$
	\mathbf{G}_r – Receive Val. Violated (§2)	×	×	$0.1\mathrm{ms}$	12	3		(\times)	$<\!0.1\mathrm{ms}$
	\mathbf{G}_{r}^{\prime} – Receive Val. Satisfied (§2)	1	1	$0.2\mathrm{ms}$	16	3	35	~	$0.1\mathrm{ms}$
	\mathbf{G}_s – Send Val. Violated (§2)	×	×	$<\!0.1\mathrm{ms}$	8	3		(\times)	$<\!0.1\mathrm{ms}$
	\mathbf{G}_{s}^{\prime} – Send Val. Satisfied (§2)	~	~	$<\!0.1\mathrm{ms}$	7	3	17	~	$<\!0.1\mathrm{ms}$
	$\mathbf{G}_{\mathrm{fold}}$ (§10)	1	1	$0.4\mathrm{ms}$	21	3	50	(\times)	$0.1\mathrm{ms}$
	$\mathbf{G}_{\mathrm{unf}}$ (§10)	~	1	$0.4\mathrm{ms}$	30	3	61	1	$0.2\mathrm{ms}$