
Formalizing Correct-by-Construction Casper
in Coq

Elaine Li∗, Traian S, erbănut, ă∗, Denisa Diaconescu∗, Vlad Zamfir†, and Grigore Ros, u∗‡
∗Runtime Verification
†Ethereum Research

‡University of Illinois at Urbana-Champaign
∗{elaine.li, traian.serbanuta, denisa.diaconescu}@runtimeverification.com

†vlzmfr@gmail.com
‡grosu@illinois.edu

Abstract—Correct-by-Construction Casper (CBC Casper) is
an Ethereum candidate consensus protocol undergoing active
design and development. We present a formalization of CBC
Casper using the Coq proof assistant that includes a model of
the consensus protocol and proofs of safety and non-triviality
protocol properties. We leverage Coq’s type classes to model
CBC Casper at various levels of abstraction. In doing so, we 1)
illuminate the assumptions that each protocol property depends
on, and 2) reformulate the protocol in general, mathematical
terms. We highlight two advantages of our approach: 1) from
a proof engineering perspective, it enables a clean separation of
concerns between theory and implementation; 2) from a protocol
engineering perspective, it provides a rigorous, foundational
understanding of the protocol conducive to finding and proving
stronger properties. We detail one such new property: strong
non-triviality.

Index Terms—consensus protocols, blockchain, Ethereum,
Coq, formal verification

I. CORRECT-BY-CONSTRUCTION CASPER

Correct-by-Construction (CBC) Casper [1] is a partial spec-
ification for a family of consensus protocols. Briefly, CBC
Casper is instantiated with five framework parameters to define
concrete protocols: 1) participating nodes, or validators, 2)
an assignment of positive real numbers to each validator,
or validator weights, 3) a fault tolerance threshold, or the
sum of permissible faulty validator weights, 4) consensus
values, and 5) an estimator function that gives acceptable
consensus values for each protocol state. These five framework
parameters in turn define protocol states and messages. CBC
Casper protocols are Byzantine fault-tolerant with respect
to equivocation: nodes sending two equivocating messages
that could not have been produced by a single execution of
the protocol. CBC Casper protocols can be instantiated to
define concrete protocols, such as Casper the Friendly Finality
Gadget [2], that share the same proofs of desired protocol
properties: safety and non-triviality. Safety states that with not
too many equivocating nodes, all participating nodes decide
on the same consensus value. Non-triviality states that it is
always possible for participating nodes to make inconsistent
decisions on consensus values.

We contribute to CBC Casper’s design and “correct-by-
construction” namesake by contributing the following:

• a formal specification of CBC Casper, instantiated with
a full node and light node version of the protocol,

• an abstraction hierarchy refining CBC Casper in terms
of i) partial order, ii) a partial order with non-local
confluence, and iii) a global state transition system,

• formal proofs of safety and weak non-triviality,
• a novel proof of strong non-triviality.

Our Coq development is publicly available at:

https://github.com/runtimeverification/casper-cbc-proofs

II. COQ FORMALIZATION

We formalize CBC Casper at three different levels of ab-
straction to illuminate the assumptions required to prove safety
and non-triviality properties. Our first abstraction removes the
protocol-specific features of messages and validator weights,
and is sufficient to show safety, namely that nodes “decide” on
the same consensus value given not too many Byzantine nodes.
We further abstract this as a bottomed partial order, and show
that it remains sufficient to show safety. In order to obtain non-
triviality properties, we add non-local confluence to the partial
order, to form our third abstraction. We use Coq’s type classes
to define our abstraction hierarchy, leveraging the relationship
between a typeclass and its instances to reflect the relationship
between CBC Casper and its protocol family members. We
summarize the relationship between the three abstractions and
the protocol properties they give rise to in the diagram below.
Boxes represent type classes, and ovals represent properties.
Solid arrows between type classes represent “instantiate”, and
dotted arrows between type classes and properties represent
“derive”. FullNode and LightNode are two concrete in-
stances of CBC Casper, with different framework parameters
and respectively, different protocol states and messages. All
arrows are transitive, and the proof of this diagram can be
found in protocol.v of our development.

Next, we detail two benefits of our formalization approach,
from a proof engineering and protocol engineering perspective
respectively.978-1-7281-6680-3/20/$31.00 © 2020 IEEE

Authorized licensed use limited to: New York University. Downloaded on December 14,2023 at 20:18:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Type class hierarchy

A. Mutual recursion

One central feature of CBC Casper is its mutually recur-
sive definition of protocol states and messages. CBC Casper
protocol states are defined as sets of messages, where each
message is a triple (c, v, j):

• c is a (proposed) consensus value;
• v identifies the message sender;
• j, the justification, is the protocol state seen by the sender

at the time of message sending.
This definition presents us with several mechanization difficul-
ties. Constructing the mutually recursive definition requires
first constructing a generic state type and in turn defining
protocol states as inductive predicates on these states. Addi-
tionally, we need to define a notion of state equality. Defining
an equivalence relation which disregards message ordering is
possible but non-trivial: the definition would itself need to be
recursive, as it requires an equivalence on messages, which
in turn is defined in terms of the same state equivalence. To
circumvent the hindrance of working with mutually recursive
state equality, we instead use canonical, sorted representatives
for states, on which we can then express state equality as
syntactic equality. These difficulties add complexity to proving
properties about protocol states and messages defined in this
way.

Our formalization approach reduces this complexity over-
head through the observation that safety and non-triviality
properties do not depend on protocol states and messages
being mutually recursive: a weaker property about states
and reachability is sufficient. Specifically, we can represent
adding messages to states as a reflexive, transitive reachability
relation on states, thus abstracting away the mechanics of how
messages are added, and how they relate to the protocol states
they are added to.

B. Strong non-triviality

Another observation in our efforts to generalize the protocol
is that non-triviality, which states the existence of a protocol
state that can reach two future protocol states which do
not share a common future, mirrors the notion of non-local
confluence in abstract rewriting systems. On the definition of

protocol states as sets of messages, future (or reachability)
is defined as set inclusion, and the common future of two
protocol states must contain the union of both their messages.
Naturally, the question of whether the existential quantifier
could be strengthened to a universal quantifier arose: is every
state a non-locally confluent state? We found a positive answer
to this question, and further found that the reachability relation
could be strengthened to atomic reachability. We call the
stronger property strong non-triviality, which states that for
every protocol state s1, there exists a protocol state s2
reachable from s1 in one step and a protocol state s3
reachable from s1 in an arbitrary number of steps, such that
s1 and s3 share a common future, but s2 and s3 do not.
Further, we give a constructive method for finding s2 and s3
for any protocol state s1. In the following section we sketch
the constructive proof of this theorem.

1) Pivotal senders: By definition, protocol states are only
valid iff they do not admit too many equivocating nodes, or
too much “fault weight”. Since fault weights are discrete,
participating nodes can continue to equivocate, increasing the
present state’s fault weight, until a state that is on the verge of
exceeding the fault weight is reached, i.e. a state that cannot
admit any more equivocation. These states are non-locally
confluent: if one more node sends a pair of equivocating
messages, the union of the resulting two protocol states would
exceed the fault weight threshold. We call such states heavy
states, and we call the additional equivocating node a pivotal
node. While a heavy state need not have a unique pivotal node;
for the purposes of proving strong non-triviality it suffices to
show the existence of one. We prove that every state has such
a pivotal sender.

2) No common futures: Given an arbitrary protocol state
s1, the property above allows us to obtain a set of nodes
vs and a single pivotal node v. We first construct a pair of
equivocating messages for v, and send one half from s1 to
obtain s1’ and s2 respectively, such that v is equivocating in
the union of s1’ and s2. We can then incrementally construct
a future state of s1’ by iterating through vs and adding pairs
of equivocating messages from each node to obtain s3. We
must now show that 1) s1 and s3 have a common future, but
2) s2 and s3 do not. 1) is trivial by definition. 2) proceeds
via contradiction: assume we have a protocol state s that is
a future state of both s2 and s3, and therefore contains all
messages in both s2 and s3, respectively all equivocating
nodes in both s2 and s3, respectively all fault weight in both
s2 and s3. It must then contain the fault weight of all the
nodes in vs in addition to the fault weight of v. However, by
definition of v’s pivotal property, the combined fault weights
of vs and v exceed the fault tolerance threshold, therefore s
cannot be a valid protocol state. We find a contradiction.

These two key ingredients respectively identifies a pivotal
node, and describes how to construct equivocations for the
remainder set of nodes and reach a future state that is heavier
by exactly their weights. The extent to which these ingredients
can be generalized across different concrete protocols is a topic
of ongoing investigation.

Authorized licensed use limited to: New York University. Downloaded on December 14,2023 at 20:18:40 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] V. Zamfir, N. Rush, A. Asgaonkar, and G. Piliouras, “Introduc-
ing the ‘Minimal CBC Casper’ Family of Consensus Protocols,”
https://github.com/cbc-casper/cbc-casper-paper.

[2] V. Buterin and V. Griffith, “Casper the Friendly Finality Gadget,”
https://arxiv.org/abs/1710.09437.

[3] The Coq Development Team, “The Coq Proof Assistant,”
https://coq.inria.fr/.

Authorized licensed use limited to: New York University. Downloaded on December 14,2023 at 20:18:40 UTC from IEEE Xplore. Restrictions apply.

