
Formalizing
Correct-by-Construction Casper

in Coq
Elaine Li, Traian Șerbănuță, Denisa Diaconescu, Vlad Zamfir, Grigore Rosu

Correct-by-Construction (CBC) Casper

Whitepaper specification Safety

Weak non-trivialityLight node

Full node

● CBC Casper is a partial specification of a family of consensus
protocols with five parameters: consensus values, estimator,
validators, validator weights, fault tolerance threshold

● Each CBC Casper family member shares the same proofs of
protocol properties: safety and non-triviality

● https://github.com/cbc-casper/cbc-casper-paper/blob/master/cbc-casper-paper-draft.pdf

https://github.com/cbc-casper/cbc-casper-paper/blob/master/cbc-casper-paper-draft.pdf

Formalization approach: abstraction hierarchy

Whitepaper specification

Abstract protocol

Partial order

Partial order + non-local confluence

Safety

Weak non-triviality

Strong non-triviality
Light node

Full node

Formalization approach: abstraction hierarchy

Whitepaper specification

Abstract protocol

Partial order

Partial order + non-local confluence

Safety

Weak non-triviality

Strong non-triviality
Light node

Full node

● States are sets of messages
● Messages contain states
● State transition is equivalent

to set inclusion
● Future states are equivalent

to set union

Mutually recursive states and messages

m1= (c,v,j)

{m2} {m1}

 {}

{m1, m2}

Fault weight increasing

● Validators have weights
● Validators “fault” by sending

“equivocating” messages
● Fault weight of a state: sum weight

of faulty senders
● Protocol states must stay within the

fault tolerance threshold

Safety properties, in pictures

... ...

Weak non-triviality

s1

s3

s2
...

∃

Strong non-triviality

...

∀ s1

s3

s2
...

Strong non-triviality

∀ s1

● w - current fault weight
● T - fault tolerance threshold
● Every state has a set of validators V and a pivotal

validator x
weight(s1)+weight(V)+weight(x)

weight(s1)+weight(V)

Strong non-triviality

s1

s2s1’ Pair of equivocating
messages

sent by pivotal sender x

Strong non-triviality

s1

s3

s2

...
s1’

s1

s3

s2

Pairs of equivocating
messages

sent by the remaining
validators in V

...

Strong non-triviality

∀ s1

s3

s2

...
s1’

Equivocation weight
includes weights in V

and weight of x

Formal verification takeaways

● Proof engineering: Coq type classes are a suitable mechanism
for abstraction

● Protocol engineering: formal approach fosters better
understanding of the protocol

Formal verification takeaways

● Proof engineering: Coq type classes are a suitable mechanism
for abstraction

● Protocol engineering: formal approach fosters better
understanding of the protocol

Thank you!

