
Characterizing Implementability of Global Protocols with
Infinite States and Data
ELAINE LI∗, New York University, USA

FELIX STUTZ, University of Luxembourg, Luxembourg

THOMAS WIES, New York University, USA

DAMIEN ZUFFEREY†, NVIDIA, Switzerland

We study the implementability problem for an expressive class of symbolic communication protocols involv-

ing multiple participants. Our symbolic protocols describe infinite states and data values using dependent

refinement predicates. Implementability asks whether a global protocol specification admits a distributed, asyn-

chronous implementation, namely one for each participant, that is deadlock-free and exhibits the same behavior

as the specification. We provide a unified explanation of seemingly disparate sources of non-implementability

through a precise semantic characterization of implementability for infinite protocols. Our characterization

reduces the problem of implementability to (co)reachability in the global protocol restricted to each partic-

ipant. This compositional reduction yields the first sound and relatively complete algorithm for checking

implementability of symbolic protocols. We use our characterization to show that for finite protocols, imple-

mentability is co-NP-complete for explicit representations and PSPACE-complete for symbolic representations.

The finite, explicit fragment subsumes a previously studied fragment of multiparty session types for which

our characterization yields a co-NP decision procedure, tightening a prior PSPACE upper bound.

Additional Key Words and Phrases: Protocol verification, Multiparty session types, Refinement

1 Introduction
Concurrency is ubiquitous in modern computing, message-passing is a major concurrency paradigm,

and communication protocols are therefore a key target for formal verification. Communication

protocols specify distributed, message-passing behaviors from a global point of view, altogether

describing the interactions between all participants in the protocol. Implementability and synthesis

are two central questions to the verification of communication protocols. Implementability asks

whether a protocol admits a distributed implementation, and synthesis in turn computes an admis-

sible one. A distributed implementation is considered admissible if it is deadlock-free and exhibits

exactly the same communication behaviors described by the specification. We refer to the latter

property as protocol fidelity. The implementability question precedes the synthesis question in

importance: synthesizing implementations for unrealizable protocols is a fruitless endeavor.

Global protocol specifications find industry applications in the form of UML’s high-level message

sequence charts and the Web Service Choreography Description Language, and are widely studied

in academia in the form of multiparty session types and choreographic programming. Multiparty

session types (MSTs) have been implemented in at least 16 programming languages including

Python [25, 69, 71], Java [46, 47], C [72], Go [11, 54], Scala [12], Rust [16, 52], OCaml [48], F# [70],

and applied to operating systems [28], high performance computing [24, 44, 73], cyber-physical

systems [62, 63], and web services [87]. We refer the reader to [86] and [65] for a comprehensive

survey of MST and choreography applicability respectively.

To model real-world verification targets, we desire for our protocol specifications to be as

expressive as possible. Various dimensions of expressivity have been explored in the literature, such

∗
corresponding author

†
Damien Zufferey was working at SonarSource in Switzerland when this work began.

Authors’ Contact Information: Elaine Li, New York University, New York, USA, efl9013@nyu.edu; Felix Stutz, University

of Luxembourg, Esch-sur-Alzette, Luxembourg, felix.stutz@uni.lu; Thomas Wies, New York University, New York, USA,

wies@cs.nyu.edu; Damien Zufferey, NVIDIA, Zurich, Switzerland, rilaak@gmail.com.

HTTPS://ORCID.ORG/0000-0003-0173-4498
HTTPS://ORCID.ORG/0000-0003-3638-4096
HTTPS://ORCID.ORG/0000-0003-4051-5968
HTTPS://ORCID.ORG/0000-0002-3197-8736
https://orcid.org/0000-0003-0173-4498
https://orcid.org/0000-0003-3638-4096
https://orcid.org/0000-0003-4051-5968
https://orcid.org/0000-0002-3197-8736


131:2 E. Li, F. Stutz, T. Wies, D. Zufferey

as arbitrary message payloads, non-deterministic choice, unrestricted recursion and parametricity.

Formalisms such as choreography automata [34], high-level message sequence charts [1, 3, 30–

33, 59, 64, 66, 68, 74] and session types [6, 7, 45, 56, 81, 89] correspond to syntactically-defined

fragments that incorporate a selection of these features.

In this paper, we study the implementability problem for a semantically-defined class of commu-

nication protocols, which we call global communicating labeled transition systems (GCLTS). GCLTS

impose only modest syntactic restrictions and subsume many existing fragments of asynchronous

multiparty session types and choreography automata. GCLTS capture the following important

features:

• Asynchrony: the semantics are interpreted over a peer-to-peer, asynchronous network, with

FIFO channels connecting each pair of protocol participants.

• Generalized sender-driven choice: the only notable syntactic restriction imposed by our

formalism is that at each branching point of the protocol’s control flow, a single participant

chooses a branch. In other words, the first message that is sent in each branch of a choice

must come from the same sender. However, we impose no restrictions on the recipient or

the message payload other than that no two branches share the same recipient and message.

• Infinite protocol state: protocol states contain registers that take values from an infinite

domain. This allows loops to carry memory across iterations, and allows the protocol to be

specified in terms of dependent refinement predicates.

• Infinite message payloads: messages can carry values drawn from an infinite data domain.

Implementability is undecidable for this general class of protocols. The presence of and interac-

tion between the aforementioned features means that even soundly approximating implementability

is challenging. Existing work is either comparable in expressivity but does not solve the imple-

mentability problem, or solves the implementability problem but is incomparably restricted in

expressivity. Zhou et al. [89] present a framework for synchronous, refined multiparty session types

that soundly approximates implementability through its endpoint projection, but that may yield

local specifications that are not implementable. Several works [2, 56, 59, 78] precisely characterize

implementability for finite protocol specifications. However, the implementability check in [2, 56]

relies on synthesizing an implementation upfront, which is not possible for infinite-state protocols.

Das and Pfenning [22] study local session types with arithmetic refinements in a binary setting.

We address these challenges by decomposing the implementability problem into two steps. First,

we give a precise, semantic characterization of implementability for GCLTS that we prove sound

and complete once and for all. Our characterization is defined directly on the global specification,

and thus forgoes the need to first synthesize a candidate implementation. Moreover, our charac-

terization gives a unified semantic explanation to disparate causes of non-implementability that

arise from the expressivity of our protocol fragment. We encapsulate the complexities introduced

by communication-specific features such as asynchrony and partial information in the first step.

Our semantic characterization reduces implementability to (co)reachability in the GCLTS. Specifi-

cally, we provide a sound and complete reduction to the first-order fixpoint logic 𝜇CLP [83]. The

𝜇CLP calculus can express recursive predicates with least and greatest fixpoint semantics where

the predicate body is constrained by a first-order logic formula over a background theory. Our

implementability characterization can therefore be checked by existing 𝜇CLP solvers. Second, we

use this reduction to obtain a blueprint for solving implementability algorithmically. Our reduction

yields algorithms that are sound and complete relative to an assumed oracle for solving 𝜇CLP

validity, in addition to decision procedures with optimal complexity for various decidable classes.

Contributions. In summary, our contributions are:



Characterizing Implementability of Global Protocols with Infinite States and Data 131:3

• Global communicating labeled transition systems (GCLTS): a semantically-defined class of

asynchronous communication protocols that subsumes most formalisms in the literature.

• A precise characterization of implementability for GCLTS.

• The first symbolic algorithm for checking implementability of infinite, symbolic protocols

that is sound and relatively complete.

• Optimal decision procedures for checking implementability of finite protocols. In particular,

we show that for explicit protocol representations that enumerate all states and transitions,

the problem is co-NP-complete, and for symbolic protocol representations that encode

states and transitions using predicates and variables, the problem is PSPACE-complete.

• As a corollary of the previous result, we obtain a co-NP decision procedure for imple-

mentability of global types, tightening a prior PSPACE upper bound [56, 57].

2 Overview
We motivate our work using an infinite state version of a two-bidder protocol, depicted as a high-

level message sequence chart (HMSC) in Fig. 1. The protocol specifies the behavior of two bidders,

B1 and B2, who negotiate to split the purchase of a book from seller S.
The protocol begins with B1 announcing to S and B2 the book 𝑦 it proposes to buy. The protocol

requires that 𝑦 signifies a valid ISBN number, which we abstract with the predicate ISBN(𝑦). The
seller S then informs B1 the requested book’s price 𝑧. After this, B1 and B2 enter a bidding phase in

which they negotiate the split of their respective contributions 𝑏1 and 𝑏2 towards the purchase. In

each round of the bidding phase, B1 proposes its contribution 𝑏1 to B2. Bidder B2 then decides to

either abort the protocol by sending a quit message to S, or respond to B1 with its own bid 𝑏2. In

case B2 aborts, S echoes the abort message to B1 and the protocol terminates. In case B2 continues
bidding, if the sum of the proposed bids exceeds the book’s price, B1 informs S of the successful
negotiation. Seller S in turn relays the message to B2. Otherwise, B1 sends a cont message to B2,
informing them that they need to enter another bidding round. Throughout the bidding phase, B1
and B2 track the values of their latest bids in the registers 𝑧1 and 𝑧2. The refinements ensure that

the proposed bids are strictly increasing from one round to the next, thus enforcing termination.

Figs. 2 to 4 show an admissible implementation for the two-bidder protocol in Fig. 1, consisting

of a local implementation for each participant: S, B1 and B2. The transition labels specify their local

behaviors: B1 ⊲ S!𝑦{ISBN(𝑦)} specifies that B1 sends a message 𝑦 to S such that 𝑦 satisfies ISBN(𝑦),
i.e. 𝑦 is a valid ISBN number; S ⊳ B1?𝑦{ISBN(𝑦)} specifies that S receives 𝑦 from B1, and can assume

ISBN(𝑦) holds of 𝑦. We assume an asynchronous setting in which every pair of participants is

connected by a FIFO channel. The implementability of Fig. 1 is witnessed by Figs. 2 to 4, which

together exhibit the same behaviors as the global protocol and is never stuck.

To see that the implementability problem is non-trivial, consider a variant of the protocol in

Fig. 1 where the succ message to S is sent by B2 instead of B1. The resulting protocol is no longer

implementable because B2 never learns about the price 𝑧 of the book 𝑦 and is therefore unable to

determine when the negotiation with B1 has succeeded.
Our example highlights several important expressive features of GCLTS:

• Generalized sender-driven choice: after B2 receives a bid from B1, it has the option to either

send a bid back to B1 and continue the bidding process, or terminate the protocol by sending

a quitmessage to the bookseller, who then relays the termination message to the first bidder.

Due to this choice interaction alone, the protocol is not expressible in [89].

• Infinite state: the protocol state contains registers that can be assigned values from an

infinite domain. Registers are updated to store the last bid from each round 𝑧1 and 𝑧2, and

to enforce that bidders make strictly increasing bids per round.



131:4 E. Li, F. Stutz, T. Wies, D. Zufferey

• Infinite message data: message payload values can be drawn from an infinite data domain,

such as the book price 𝑧 and bids 𝑏1 and 𝑏2.

• Dependent refinement predicates: message payloads are constrained by data refinements

such as 𝑧1 < 𝑏1 and 𝑧 < 𝑏1 + 𝑏2. The refinement predicates can refer to current register

values in addition to data values sent in prior messages.

• Partial information: each protocol participant only has a partial view of the global protocol

state. For example, even though S participates in the bidding phase of the protocol, it never

learns about the bids 𝑏1 and 𝑏2 in each bidding round. In fact, the registers 𝑧1 and 𝑧2 that

store the last bid are known only to the bidders.

The presence of these features in the class of communication protocols we consider makes

checking implementability uniquely challenging. For protocols with finite GCLTS specifications,

deciding implementability in the presence of asynchrony and non-deterministic choice already

presents a challenge. Note that finiteness here refers only to the specification, and does not mean that

the underlying protocol is finite-state, nor that it contains only finite traces. Most existing work has

therefore focused on developing projection operators that are sound but incomplete [14, 45, 75, 81].

These projection operators solve implementability and synthesis simultaneously by computing a

candidate implementation, but often fail eagerly for protocols for which an implementation exists.

Li et al. [56] proposed the first sound and complete projection operator for finite, asynchronous,

multiparty session types. The projection operator critically relies on the observation that if a global

type is implementable, then a canonical implementation implements it. Thus, the implementability

problem reduces to checking whether this canonical implementation indeed implements the global

type, i.e. it recognizes the same set of behaviors and is deadlock-free. Towards these ends, Li et al.

[56] identify sound and complete conditions, referred to as Send Validity and Receive Validity, that

are checked on the states of the canonical implementation.

In the presence of dependent refinement predicates, checking these conditions is not straightfor-

ward. Consider the examples S1 (using a○) and S′
1
(using b○) in Fig. 5, which are variations of the ex-

amples for Receive Validity [56] featuring dependent predicates. A transition label p→r :𝑦{𝑦 > 𝑥},

S B1 B2𝑦{ISBN(𝑦) }
𝑦{ISBN(𝑦) }

𝑧{𝑧 > 0}

S B1 B2𝑏1 {𝑏1 > 𝑧1 }

S B1 B2quit

quit

S B1 B2succ{𝑏1 + 𝑏2 ≥ 𝑧}
succ

S B1 B2𝑏2 {𝑏2 > 𝑧2 }

S B1 B2cont{𝑏1 + 𝑏2 < 𝑧}

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨0, 0⟩

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨𝑏1, 𝑏2 ⟩

Fig. 1. Two-bidder protocol.

𝑞0,S

S

𝑞1,S

𝑞2,S

𝑞3,S

𝑞4,S

𝑞5,S

𝑞6,S

S ⊳ B1?𝑦{ISBN(𝑦) }

S ⊲ B1!𝑧{𝑧 > 0}

S ⊳ B2?quit

S ⊲ B1!quit

S ⊳ B1?succ{𝑏1 + 𝑏2 ≥ 𝑧}

S ⊲ B2!succ

Fig. 2. State machine for seller S for Fig. 1.



Characterizing Implementability of Global Protocols with Infinite States and Data 131:5

𝑞0,B1

B1

𝑞1,B1

𝑞2,B1𝑞3,B1

𝑞4,B1

𝑞5,B1

𝑞6,B1
𝑞7,B1

𝑞8,B1
𝑞9,B1

B1 ⊲ S!𝑦{ISBN(𝑦) }

B1 ⊲ B2!𝑦{ISBN(𝑦) }

B1 ⊳ S?𝑧{𝑧 > 0}

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨0, 0⟩

B1 ⊲ B2!𝑏1 {𝑏1 > 𝑧1 }

B1 ⊳ S?quit B1 ⊳ B2?𝑏2 {𝑏2 > 𝑧2 }

B1 ⊲ B2!succ{𝑏1 + 𝑏2 ≥ 𝑧} B1 ⊲ B2!cont{𝑏1 + 𝑏2 < 𝑧}

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨𝑏1, 𝑏2 ⟩

Fig. 3. State machine for bidder B1 for Fig. 1.

𝑞0,B2

B2

𝑞1,B2

𝑞2,B2

𝑞3,B2

𝑞4,B2
𝑞5,B2

𝑞6,B2
𝑞7,B2

B2 ⊳ B1?𝑦{ISBN(𝑦) }

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨0, 0⟩

B2 ⊳ B1?𝑏1 {𝑏1 > 𝑧1 }

B2 ⊲ S!quit B2 ⊲ B1!𝑏2 {𝑏2 > 𝑧2 }

B2 ⊳ S?succ B2 ⊳ B1?cont{𝑏1 + 𝑏2 < 𝑧}

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨𝑏1, 𝑏2 ⟩

Fig. 4. State machine for bidder B2 for Fig. 1.

which is a○ for S1, atomically specifies the send event by p and the corresponding receive event

by r, along with the constraint that 𝑦 satisfies 𝑦 > 𝑥 . In S1, participant p chooses a branch with-

out explicitly informing r of their choice. In both branches, r is required to subtract the second

value that is sent from the first value that is sent, and send the result back to p. However, due to
asynchrony, both messages can arrive in r’s message channels simultaneously, and r cannot tell
which value was sent first. Therefore, r may subtract the values in the wrong order, rendering the

protocol unimplementable.

Li et al. [56] propose one method of protocol repair: introducing a message sent by r on each

branch that creates a causal dependency between the messages from p and q, so that r can no longer

receive them in either order. The incorporation of dependent refinements enables a new method

of protocol repair: one that does not change the communication events among the participants.

The newly repaired protocol is depicted in S′
1
, in which the predicate on the second transition is

changed from 𝑦 > 𝑥 to 𝑦 = 𝑥 + 2. Despite the fact that r is still not informed of p’s choice, r can
infer p’s choice through the parity of the first value it received from p and thus correctly follow the

protocol: if 𝑦 is even, r receives from p first, and if 𝑦 is odd, r receives from q first.

We now turn our attention to send violations. In the protocol shown in Fig. 6, s chooses a branch
and communicates its choice to q. Participant p is again not explicitly informed of the choice: in

fact, p can receive 4 from q on both branches. At first glance, it appears as though it is safe for p
to send o to q upon receiving 4 from q, because whilst p cannot distinguish the two branches,

both branches contain the transition p→q :o. Upon closer inspection, the predicate guarding the

transition immediately preceding p −→ q : o on the lower branch, 𝑥2 = 5, is only satisfied when p

s→p :𝑥 {⊤} a○ p→r :𝑦{𝑦 > 𝑥 }

b○ p→r :𝑦{𝑦 = 𝑥 + 2}

p→q :b{𝑒𝑣𝑒𝑛 (𝑥 ) }

p→q :m{𝑜𝑑𝑑 (𝑥 ) }

p→r :𝑧1 q→r :𝑧2
r→p :𝑧{𝑧 = 𝑧1 − 𝑧2 }

q→r :𝑧2 p→r :𝑧1 r→p :𝑧{𝑧 = 𝑧2 − 𝑧1 }

Fig. 5. Two protocols: S1 using a○ with receive order violation S′
1
using b○ without receive order violation.



131:6 E. Li, F. Stutz, T. Wies, D. Zufferey

𝑞1

𝑞2

s→q :b
q→p :𝑥1 {𝑥1 = 4} p→q :o q→r :m

s→q :m
q→p :𝑥2 {⊤}

q→r :b{𝑥2
≠ 5}

q→r :m{𝑥
2 = 5} p→q :o

Fig. 6. S2: An protocol with a send violation.

receives 5 from q. When p receives 4, the lower branch from 𝑞2 is disabled, and since the upper

branch from 𝑞2 does not contain the transition p→q :o, the protocol is not implementable.

The examples above exemplify the ways in which refinement predicates complicate imple-

mentability checking for symbolic protocols. We return to these examples, in addition to some

others, in greater detail in §4 when we present our precise characterization of implementability. We

structure the rest of the paper as follows. §3 presents relevant preliminary definitions and defines

the class of communication protocols we consider. §4 presents our semantic characterization of

implementability for GCLTS in terms of (co)reachability, and proves that it is precise. §5 describes

our sound and complete reduction from the characterization in §4 to logical formulas in 𝜇CLP [83],

and additionally presents improved complexity results under certain finiteness assumptions on the

GCLTS. §6 discusses related work and concludes.

3 Preliminaries
We introduce some basic concepts and notation before defining our class of protocols.

Words. Let Σ be an alphabet. Σ∗ denotes the set of finite words over Σ, Σ𝜔 the set of infinite

words, and Σ∞ their union Σ∗ ∪ Σ𝜔 . A word 𝑢 ∈ Σ∗ is a prefix of word 𝑣 ∈ Σ∞, denoted 𝑢 ≤ 𝑣 ,

if there exists 𝑤 ∈ Σ∞ with 𝑢 · 𝑤 = 𝑣 ; we denote all prefixes of 𝑢 with pref (𝑢). Given a word

𝑤 = 𝑤0 . . .𝑤𝑛 , we use 𝑤 [𝑖] to denote the i-th symbol 𝑤𝑖 ∈ Σ, and 𝑤 [0..𝑖] to denote the subword

between and including𝑤0 and𝑤𝑖 , i.e.𝑤0 . . .𝑤𝑖 .

Message Alphabets. Let P be a finite set of participants and V be a (possibly infinite) data

domain. We define the set of synchronous events Γsync ≔ {p→q :𝑚 | p, q ∈ P and𝑚 ∈ V} where
p→q :𝑚 denotes a message exchange of𝑚 from sender p to receiver q. For a participant p ∈ P,
we define the alphabet Γp = {p→ q :𝑚 | q ∈ P, 𝑚 ∈ V} ∪ {q→ p :𝑚 | q ∈ P, 𝑚 ∈ V}, and
a homomorphism ⇓Γp , where 𝑥⇓Γp = 𝑥 if 𝑥 ∈ Γp and 𝜀 otherwise. A synchronous event is split

into a send and receive event for the respective participant, yielding asynchronous events. For a

participant p ∈ P, we define the alphabet Σp,! = {p ⊲ q!𝑚 | q ∈ P, 𝑚 ∈ V} of send events and the

alphabet Σp,? = {p ⊳ q?𝑚 | q ∈ P, 𝑚 ∈ V} of receive events. The event p ⊲ q!𝑚 denotes participant

p sending a message𝑚 to q, and p ⊳ q?𝑚 denotes participant p receiving a message𝑚 from q. We

write Σp = Σp,! ∪ Σp,?, Σ! =
⋃

p∈P Σp,!, and Σ? =
⋃

p∈P Σp,?. Finally, Σasync = Σ! ∪ Σ?. We define

a homomorphism to map the synchronous alphabet to its asynchronous counterpart, defined as

split(p→ q :𝑚) ≔ p ⊲ q!𝑚. q ⊳ p?𝑚. Because split is injective, there exists a unique inverse,

which we denote split−1
. We say that p is active in 𝑥 ∈ Σasync if 𝑥 ∈ Σp. For each participant

p ∈ P, we define a homomorphism ⇓Σp , where 𝑥⇓Σp = 𝑥 if 𝑥 ∈ Σp and 𝜀 otherwise. We writeV(𝑤)
to project the send and receive events in𝑤 onto their messages. We fix P andV in the remainder

of the paper.

Labeled Transition Systems. A labeled transition system (LTS) is a tuple S = (𝑆, Γ,𝑇 , 𝑠0, 𝐹 ) where
𝑆 is a set of states, Γ is a set of labels, 𝑇 is a set of transitions from 𝑆 × Γ × 𝑆 , 𝐹 ⊆ 𝑆 is a set of final

states, and 𝑠0 ∈ 𝑆 is the initial state. We use 𝑝
𝛼−→ 𝑞 to denote the transition (𝑝, 𝛼, 𝑞) ∈ 𝑇 . Runs and



Characterizing Implementability of Global Protocols with Infinite States and Data 131:7

traces of an LTS are defined in the expected way. A run is maximal if it is either finite and ends

in a final state, or is infinite. The language of an LTS S, denoted L(S), is defined as the set of

maximal traces. A state 𝑠 ∈ 𝑆 is a deadlock if it is not final and has no outgoing transitions. An

LTS is deadlock-free if no reachable state is a deadlock. Given an LTS S = (𝑆, Γ,𝑇 , 𝑠0, 𝐹 ) and a state

𝑠 ∈ 𝑆 , we use S𝑠 to denote the LTS obtained by replacing 𝑠0 with 𝑠 as the initial state: (𝑆, Γ,𝑇 , 𝑠, 𝐹 ).

3.1 Global Communicating Labeled Transition Systems (GCLTS)
We use LTS over the synchronous alphabet Γsync to model communication protocols from a global

perspective. We impose three more conditions on the class of LTSs we consider: that final states do

not contain outgoing transitions, that multiple outgoing transitions from a state share a sender,

and that the LTS is deadlock-free.

Definition 3.1 (Global communicating LTS). AnLTSS = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) is a global communicating

labeled transition system (GCLTS) if the following conditions hold:

(1) sink-finality: for every final state 𝑠 ∈ 𝐹 , there does not exist 𝑙 ∈ Γsync and 𝑠′ ∈ 𝑆 with

𝑠
𝑙−→ 𝑠′ ∈ 𝑇 ;

(2) sender-driven choice: for all states 𝑠, 𝑠1, 𝑠2 ∈ 𝑆 and 𝑙1, 𝑙2 ∈ Γsync such that 𝑠
𝑙𝑖−→ 𝑠𝑖 ∈ 𝑇 for

𝑖 ∈ {1, 2}, there is a participant p ∈ P who is the sender for both, i.e. split(𝑙𝑖 ) ∈ Σp,! for

𝑖 ∈ {1, 2}, and furthermore 𝑙1 = 𝑙2 =⇒ 𝑠1 = 𝑠2;

(3) deadlock freedom: S is deadlock-free.

Condition (1) is ubiquitous in the domain of multiparty session types and was also shown to

require special treatment in the literature on high-level message sequence charts [18].

Condition (2) is a generalisation of most multiparty session types fragments, which require not

only a dedicated sender but also a dedicated receiver. This more restrictive condition is called

directed choice. In contrast, mixed choice lifts all restrictions on choice, and amounts to only requir-

ing determinism. Lohrey [59] showed that implementability is undecidable for HMSCs satisfying

determinism and Condition (3). Stutz [79] showed that implementability remains undecidable for

mixed choice global multiparty session types satisfying determinism and Conditions (1) and (3).

Sender-driven choice thus represents a good middle ground, allowing to express interesting com-

munication patterns while retaining decidability of implementability.

Condition (3) simply requires that protocols do not specify deadlocking behaviors.

In the remainder of the paper we refer to a GCLTS simply as a protocol.

Restricting Protocols to Participants. From a protocol S, we can define a local protocol for each

participant p via domain restriction to Σp. Formally, given a protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ), we

define Sp ≔ (𝑆, Γp ⊎ {𝜀},𝑇p, 𝑠0, 𝐹 ) where 𝑇p ≔ {𝑠
𝑙⇓Γp−−−→ 𝑠′ | 𝑠 𝑙−→ 𝑠′ ∈ 𝑇 } for a participant p ∈ P.

Asynchronous Protocol Semantics. Note that a protocol is specified using the synchronous alpha-

bet Γsync . To define the asynchronous semantics of a protocol S we first map finite and infinite words

of S onto their asynchronous counterpart using split, thus obtaining a set of asynchronous words
in which matching send and receive events are adjacent to each other. In an asynchronous, FIFO

network, two events are independent if they are not related by the happened-before relation [53].

For example, any two send events from distinct senders are independent. Consequently, two words

are indistinguishable if any asynchronous, FIFO implementation that recognizes one word must

recognize the other, e.g. 𝑤 · p ⊲ q!𝑚 · r ⊲ s!𝑚′ · 𝑢 and 𝑤 · r ⊲ s!𝑚′ · p ⊲ q!𝑚 · 𝑢, where p ≠ r. We

define our protocol semantics as the set of channel-compliant [60] words that are closed under this

notion of indistinguishability. Channel compliance characterizes words that respect FIFO order, i.e.



131:8 E. Li, F. Stutz, T. Wies, D. Zufferey

receive events appear after their matching send event, and the order of receive events follows that

of send events in each channel.

Definition 3.2 (Channel compliance). Let𝑤 ∈ Σ∞
async

. We say that𝑤 is channel-compliant if for all

prefixes𝑤 ′ ≤ 𝑤 , for all p ≠ q ∈ P,V(𝑤 ′⇓q⊳p?_
) ≤ V(𝑤 ′⇓p⊲q!_

).

The asynchronous semantics of a protocol is defined as follows:

C∼ (S) = {𝑤 ′ ∈Σ∗
async
| ∃𝑤 ∈ Σ∗

async
.𝑤 ∈split(L(S)) ∧𝑤 ′ is channel-compliant

∧ ∀p∈P . 𝑤 ′⇓Σp =𝑤⇓Σp }
∪ {𝑤 ′ ∈Σ𝜔

async
| ∃𝑤 ∈ Σ𝜔

async
.𝑤 ∈split(L(S)) ∧ ∀𝑣 ′ ≤ 𝑤 ′ . ∃𝑢,𝑢′ ∈ Σ∗

async
.

𝑣 ′ · 𝑢′ is channel-compliant ∧ 𝑢 ≤ 𝑤 ∧ ∀p ∈ P . (𝑣 ′ · 𝑢′)⇓Σp = 𝑢⇓Σp } .

Membership of infinite words is defined in terms of their prefixes: every prefix 𝑣 ′ must be channel-

compliant, and moreover extensible to a word 𝑣 ′𝑢′ that is indistinguishable from another prefix

already in the language. Since we do not make any fairness assumptions on scheduling, the

semantics of infinite words includes traces such as (p ⊲ q!𝑚)𝜔 for the protocol (p ⊲ q!𝑚.q ⊳ p?𝑚)𝜔 ,
where only the sender is scheduled. Membership of finite words follows standard MSC semantics.

In the remainder of the paper, we overload notation and use L(S) to denote C∼ (S).

Communicating LTS. We use communicating LTS to model the local behaviors of participants:

T = {{𝑇p}}p∈P is a communicating labeled transition system (CLTS) over P andV if 𝑇p is a deter-

ministic LTS over Σp for every p ∈ P, denoted by (𝑄p, Σp, 𝛿p, 𝑞0,p, 𝐹p). Let
∏

p∈P 𝑄p denote the set

of global states and Chan = {(p, q) | p, q ∈ P, p ≠ q} denote the set of channels. A configuration of

A is a pair (®𝑠, 𝜉), where ®𝑠 is a global state and 𝜉 : Chan→ V∗ is a mapping from each channel

to a sequence of messages. We use ®𝑠p to denote the state of p in ®𝑠 . The CLTS transition relation,

denoted→, is defined as follows.

• (®𝑠, 𝜉) p⊲q!𝑚−−−−→ (®𝑠 ′, 𝜉 ′) if (®𝑠p, p ⊲ q!𝑚, ®𝑠 ′p) ∈ 𝛿p, ®𝑠r = ®𝑠 ′r for every participant r ≠ p, 𝜉 ′ (p, q) =
𝜉 (p, q) ·𝑚 and 𝜉 ′ (𝑐) = 𝜉 (𝑐) for every other channel 𝑐 ∈ Chan.
• (®𝑠, 𝜉) q⊳p?𝑚−−−−−→ (®𝑠 ′, 𝜉 ′) if (®𝑠q, q ⊳ p?𝑚, ®𝑠 ′q) ∈ 𝛿q, ®𝑠r = ®𝑠 ′r for every participant r ≠ q, 𝜉 (p, q) =
𝑚 · 𝜉 ′ (p, q) and 𝜉 ′ (𝑐) = 𝜉 (𝑐) for every other channel 𝑐 ∈ Chan.

In the initial configuration (®𝑠0, 𝜉0), each participant’s state in ®𝑠0 is the initial state 𝑞0,p of 𝐴p, and

𝜉0 maps each channel to 𝜀. A configuration (®𝑠, 𝜉) is final iff ®𝑠p is final for every p and 𝜉 maps each

channel to 𝜀. Runs and traces are defined in the expected way. A run is maximal if either it is finite

and ends in a final configuration, or it is infinite. The language L(T ) of the CLTS T is defined as

the set of maximal traces. A configuration (®𝑠, 𝜉) is a deadlock if it is not final and has no outgoing

transitions. A CLTS is deadlock-free if no reachable configuration is a deadlock.

Observe that in a CLTS, send transitions are always enabled, whereas receive transitions are

only enabled if the message exists at the head of its corresponding channel. Communicating state

machines [8] are a special case of CLTS where the LTS for each participant p ∈ P is a deterministic

finite state machine. Note that CLTS describe asynchronous communication with message channels

of unbounded size. Thus, they differ from Zielonka’s asynchronous automata [90], which actually

describe synchronously communicating systems [67]. We refer the reader to [26] for further details.

Finally, we define protocol implementability.

Definition 3.3 (Protocol Implementability). A protocol S is implementable if there exists a CLTS

{{𝑇p}}p∈P such that the following two properties hold: (i) protocol fidelity: L({{𝑇p}}p∈P) = L(S),
and (ii) deadlock freedom: {{𝑇p}}p∈P is deadlock-free. We say that {{𝑇p}}p∈P implements S.



Characterizing Implementability of Global Protocols with Infinite States and Data 131:9

𝑞0 𝑞1 𝑞2 𝑞3

𝑞4

𝑞5

𝑞6

𝑞7

𝑞8

{
𝑟𝑦 = 0 ∧ 𝑟𝑧 = 0

∧ 𝑟𝑧
1
= 0 ∧ 𝑟𝑧

2
= 0

}
B1→S :𝑦

{
ISBN(𝑦)
∧ 𝑟 ′𝑦 = 𝑦

}
B1→B2 :𝑦{𝑦 = 𝑟𝑦 }

S→B1 :𝑧

{
𝑧 > 0

∧ 𝑟 ′𝑧 = 𝑧

}

B1→B2 :𝑏1

{
𝑏1 > 𝑟𝑧

1

∧ 𝑟 ′𝑧
1

= 𝑏1

}

B2→S :𝑥 {𝑥 = quit}

S→B1 :𝑥 {𝑥 = quit}

B2→B1 :𝑏2

{
𝑏2 > 𝑟𝑧

2

∧ 𝑟 ′𝑧
2

= 𝑏2

}

B1→S :𝑥

{
𝑥 = succ

∧ 𝑟𝑧
1
+ 𝑟𝑧

2
≥ 𝑟𝑧

}
S→B2 :𝑥 {𝑥 = succ}

B1→B2 :𝑥

{
𝑥 = cont

∧ 𝑟𝑧
1
+ 𝑟𝑧

2
< 𝑟𝑧

}

Fig. 7. The two-bidder protocol from Fig. 1 as a symbolic protocol with registers 𝑟𝑧 , 𝑟𝑦 , 𝑟𝑧1
, and 𝑟𝑧2

.

A notion of implementability that relaxes language equality to language inclusion has been

studied as protocol refinement [55]. Alternatively, one can expand the set of protocol behaviors to

include deadlocking behaviors, resulting in a notion of implementability that replaces language

equality with prefix set equality, and waives the requirement of deadlock freedom.

3.2 Symbolic Protocols with Dependent Refinements
We now introduce our model for finitely representing infinite state protocols. We refer to these

representations simply as symbolic protocols. Figure 7 shows the two-bidder protocol from Fig. 1

expressed as a symbolic protocol.

The formal definition of this class of symbolic protocols is given below. In this definition, we

assume a fixed but unspecified first-order background theory of message values (e.g. linear integer

arithmetic). We assume standard syntax and semantics of first-order formulas and denote by F
the set of first-order formulas with free variables drawn from an infinite set 𝑋 . We assume that

these variables are interpreted over the set of message valuesV . For a valuation 𝜌 ∈ 𝑋 →V and

𝜑 ∈ F (𝑋 ), we write 𝜌 |= 𝜙 to indicate that 𝜑 evaluates to true under 𝜌 in the underlying theory.

Definition 3.4 (Symbolic protocol). A symbolic protocol is a tuple S = (𝑆, 𝑅,Δ, 𝑠0, 𝜌0, 𝐹 ) where
• 𝑆 is a finite set of control states,

• 𝑅 is a finite set of register variables,

• Δ ⊆ 𝑆 × P × 𝑋 × P × F × 𝑆 is a finite set that consists of symbolic transitions of the form

𝑠
p→q:𝑥 {𝜑 }
−−−−−−−−→ 𝑠′ where the formula 𝜑 with free variables 𝑅 ⊎ 𝑅′ ⊎ {𝑥} expresses a transition

constraint that relates the old and new register values (𝑅 and 𝑅′), and the sent value 𝑥 ,

• 𝑠0 ∈ 𝑆 is the initial control state,

• 𝜌0 : 𝑅 →V is the initial register assignment, and

• 𝐹 ⊆ 𝑆 is a set of final states.

To streamline our definition, we choose not to separate register update expressions from predi-

cates describing the communication. Rather, we specify everything together in a single formula 𝜑 ,

that can only talk about the current value being communicated, and the register values in the pre-

and post-state. Thus, 𝜑 can describe values that are communicated between participants, in addition

to register assignments and updates. For example, p→ q : 𝑥{𝑒𝑣𝑒𝑛(𝑥)∧𝑟 ′
1
= 𝑟1+2∧𝑟 ′

2
= 𝑥} describes

p sending q an even number 𝑥 , incrementing the value of register 𝑟1 by 2, and storing the value of

𝑥 in register 𝑟2. We formally specify the two-bidder protocol from Fig. 1 as a symbolic protocol

in Fig. 7 for demonstration purposes; note that the transition predicate ISBN(𝑦) from 𝑞1 to 𝑞2 is

replaced with an equality. For readability and conciseness, we employ the following conventions



131:10 E. Li, F. Stutz, T. Wies, D. Zufferey

from now on. We treat communication variables as registers that are automatically assigned the

communicated value, e.g. S→B1 :𝑧{𝑧 > 0} should be understood as S→B1 :𝑥{𝑥 > 0 ∧ 𝑧′ = 𝑥} for
some fresh 𝑥 . Furthermore, if the communicated value is a constant 𝑐 and there is no need to store

this value, we inline it and write S→B2 :succ{⊤} instead of S→B2 :𝑥{𝑥 = succ}. We may omit the

condition ⊤, turning S→B2 :succ{⊤} into S→B2 :succ.
Symbolic protocols are specification-wise similar to symbolic register automata [19], but allow

more general patterns of register manipulation and do not a priori require formulas to come from an

effective Boolean algebra. Symbolic protocols can be seen as a finite description of an infinite-state

LTS, whose concrete states consist of a control state along with an assignment for the register

variables 𝑅. Transitions are concrete communication events that optionally modify register values.

We formally define the concretization of a symbolic protocol below.

Definition 3.5 (Concretization of symbolic protocols). For a symbolic protocol S = (𝑆, 𝑅,Δ, 𝑠0, 𝜌0, 𝐹 ),
let SS denote its concrete protocol. The set of states of SS is 𝑆 × (𝑅 →V).

Transitions in SS are defined as follows:

𝑠1

p→q:𝑥 {𝜑 }
−−−−−−−−→ 𝑠2 ∈ Δ 𝜌1𝜌

′
2
[𝑥 ↦→ 𝑣] |= 𝜑

(𝑠1, 𝜌1)
p→q:𝑣−−−−−→ (𝑠2, 𝜌2)

Intuitively, the rule says that a symbolic transition from 𝑠1 to 𝑠2 can be instantiated to one from

(𝑠1, 𝜌1) to (𝑠2, 𝜌2) on value 𝑣 when 𝑣 together with the register assignments in the pre- and post-

state satisfy the transition constraint 𝜑 . Here, we use juxtaposition 𝜌1𝜌
′
2
of register assignments to

express their disjoint union. The assignment 𝜌 ′
2
is obtained from 𝜌2 by replacing registers 𝑟 in the

domain with their primed version in 𝑅′. The initial state is defined as (𝑠0, 𝜌0). A state (𝑠, 𝜌) in SS is
final when 𝑠 ∈ 𝐹 .

Thus, the concrete protocol SS is a protocol over the alphabet Γsync . The language of a symbolic

protocol S is defined as the language of its concretization SS. Consequently, a symbolic protocol is

implementable if its concretization is implementable.

4 Characterizing Protocol Implementability
We motivate our precise characterization of protocol implementability through examples of non-

implementable protocols, and show that seemingly disparate sources of non-implementability share

a unified semantic explanation. Recall the protocol S1 from §2 with a receiver violation, depicted in

Fig. 5. The infinite-state LTS S1 contains the two concrete run prefixes depicted in Fig. 8, where the

values of 𝑥,𝑦 are 2, 3 and 1, 3 respectively.

Inspecting S1’s specification reveals that the protocol expects r to receive messages from p and q
in a different order depending on the branch that q chooses to follow. However, this expectation

is unreasonable in a distributed setting. Between the two concrete runs, r’s partial view of the

protocol’s behavior is the same: r receives a value 3 from p, yet r is expected to receive in p, q order
in one run, and receive in q, p order in the other.

(a)

s→p : 2 p→r : 3
p→q :b p→r :o q→r :o r→p :b

(b)

s→p : 1 p→r : 3

p→q :m q→r :o p→r :o r→p :m

Fig. 8. Two concrete runs of S1 (Fig. 5): (a) with 𝑥 = 2 and 𝑦 = 3 and (b) with 𝑥 = 1 and 𝑦 = 3.



Characterizing Implementability of Global Protocols with Infinite States and Data 131:11

𝑞1s→q :b
q→p : 4 p→q :o q→r :m

Fig. 9. A concrete run of S2 (Fig. 6) with s choosing the
top branch.

𝑞2

s→q :m
q→p : 4

q→r :b

Fig. 10. A concrete run of S2 (Fig. 6) with
s choosing the bottom branch and 𝑥2 = 4.

Recall the protocol S2 from §2 with a sender violation, depicted in Fig. 6. Again inspecting S2’s

specification, the branching structure imposes the expectation that on the top branch, p should send
q an o message, whereas on the bottom branch, p should immediately terminate. The two concrete

runs in Fig. 9 and Fig. 10 again demonstrate that this expectation is unreasonable: p receives the
value 3 from q in both runs, but in one run is expected to send a message, whereas in the other is

expected to terminate.

The non-implementability in the examples above can be attributed to insufficient local informa-

tion about protocol control flow. This source of non-implementability is inherent to the expressive

power of branching choice in protocol specifications, and is present even in finite protocols with

more restricted choice constructs. While most existing works soundly detect insufficient local

information through conservative projection algorithms [14, 45, 75, 81], Li et al. [56] give a com-

plete characterization. To check implementability, they first obtain a candidate implementation

by restricting the global protocol onto each participant’s alphabet, and then determinizing the

resulting finite state automaton. Then, they check sound and complete conditions directly on the

states of the candidate implementation.

Our first observation towards a precise characterization is that implementability can be checked

directly on the global protocol specification, without synthesizing a candidate implementation

upfront. This is especially important in the general case, when synthesizing a candidate imple-

mentation is itself challenging and not always possible. Our analysis of the protocols above shows

that non-implementability can be blamed solely on the existence of certain states in the concrete

LTS represented by the global protocol. In fact, we show in §5 that the implementability check for

global types by Li et al. [56] can be made more efficient by forgoing the synthesis step.

Let us now turn our attention to a different source of non-implementability that is unique to the

setting of dependent data refinements. Consider the following pair of symbolic protocols S3 and S
′
3
,

depicted in Fig. 11 and Fig. 12.

Non-implementability is again caused by insufficient local information, but this time with respect

to message data rather than control flow: in fact, no branching choice appears in this pair of simple

protocols. The problem instead arises in the fact that in both S3 and S
′
3
, r does not know the value

of 𝑥 . While an implementation for r could produce a subset of S3’s behaviors (e.g. by sending

𝑧 such that 𝑧 > 𝑦), or produce a superset of S3’s behaviors (e.g. by sending all values for 𝑧), no

implementation can produce exactly the specified behaviors, as required by protocol fidelity. Zhou

et al. [89] address partial information of protocol variables by syntactically classifying whether a

variable is known or unknown to a participant, and annotating the variables accordingly in the

typing context: a variable is known to its sender and receiver, and unknown to all other participants.

p→q :𝑥 {⊤} q→r :𝑦{𝑦 > 𝑥 } r→p :𝑧{𝑧 > 𝑥 }

Fig. 11. S3: A non-implementable protocol with
dependent refinements.

p→q :𝑥 {⊤} q→r :𝑦{𝑦 = 𝑥 } r→p :𝑧{𝑧 > 𝑥 }

Fig. 12. S′
3
: An implementable protocol with

dependent refinements.



131:12 E. Li, F. Stutz, T. Wies, D. Zufferey

(a)

p→q : 2 q→r : 4 r→p : 3

(b)

p→q : 3 q→r : 4 r→p : 4

Fig. 13. Two concrete runs of S3 (Fig. 11): (a) with 𝑥 = 2, 𝑦 = 4, 𝑧 = 3 and (b) with 𝑥 = 3, 𝑦 = 4, 𝑧 = 4.

However, this syntactic analysis is itself insufficient, as demonstrated by these examples: both

protocols yield the same classification of variables per participant, yet one is implementable and

the other is not.

We instead turn to concrete runs of S3 to find the source of non-implementability. Let us consider

the concrete runs of S3 depicted in Fig. 13, where the values of 𝑥,𝑦 are 2, 4 and 3, 4 respectively.

In this pair of runs, r observes the same behaviors, namely receiving the value 4 from q. While S3

also permits r to send 4 to p in the first run, sending 3 to p in the second run constitutes a violation

to the refinement predicate 𝑧 > 𝑥 , i.e. 3 > 3 is false. Again, this presents a problem because the two

run prefixes are indistinguishable to r. Observe that in this example, non-implementability can

again be blamed solely on the existence of states in the global protocol.

We formalize a participant’s local information about the protocol using two variations on the

standard notion of reachability. Let S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) be a protocol and let p ∈ P be a participant.

The standard notion defines 𝑠′ as reachable from 𝑠 in S on𝑤 ∈ Γ∗
sync

, denoted 𝑠
𝑤−→∗ 𝑠′, when there

exists a sequence of transitions 𝑠1

𝑙1−→ 𝑠2 . . . 𝑠𝑛−1

𝑙𝑛−1−−−→ 𝑠𝑛 , such that 𝑠1 = 𝑠 , 𝑠𝑛 = 𝑠′, 𝑙1 . . . 𝑙𝑛−1 = 𝑤 and

for each 1 ≤ 𝑖 < 𝑛, it holds that 𝑠𝑖
𝑙𝑖−→ 𝑠𝑖+1 ∈ 𝑇 . We first define a notion of reachability that restricts

the transitions to only the actions observable by a single participant.

Participant-based Reachability. We say that 𝑠 ∈ 𝑆 is reachable for p on 𝑢 ∈ Γ∗p when there exists

𝑤 ∈ Γ∗
sync

such that 𝑠0

𝑤−→∗ 𝑠 ∈ 𝑇 and 𝑤⇓Γp = 𝑢, which we denote 𝑠0

𝑢
=⇒
p

∗ 𝑠 . We characterize

simultaneously reachable pairs of states for each participant using the notion of participant-based

reachability.

Simultaneous Reachability. We say that 𝑠1, 𝑠2 ∈ 𝑆 are simultaneously reachable for participant p

on 𝑢 ∈ Γ∗p , denoted 𝑠0

𝑢
=⇒
p

∗ 𝑠1, 𝑠2, if there exist𝑤1,𝑤2 ∈ Γ∗sync such that 𝑠0

𝑤1−−→∗ 𝑠1 ∈ 𝑇, 𝑠0

𝑤2−−→∗ 𝑠2 ∈ 𝑇
and𝑤1⇓Γp = 𝑤2⇓Γp = 𝑢. Simultaneous reachability captures the notion of locally indistinguishable

states: to a participant, two states are locally indistinguishable if they are simultaneously reachable.

Send Coherence requires that any message that can be sent from a state can also be sent from all

other states that are locally indistinguishable to the sender.

Definition 4.1 (Send Coherence). A protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) satisfies Send Coherence (SC)

when for every 𝑠1

p→q:𝑚−−−−−→ 𝑠2 ∈ 𝑇, 𝑠′1 ∈ 𝑆 :

(∃𝑢 ∈ Γ∗p . 𝑠0

𝑢
=⇒
p

∗ 𝑠1, 𝑠
′
1
) =⇒ (∃𝑠′

2
∈ 𝑆. 𝑠′

1

p→q:𝑚
======⇒

p

∗ 𝑠′
2
) .

Receive Coherence, on the other hand, requires that no message which can be received from a

state can be received from any other state that is locally indistinguishable to the receiver.

Definition 4.2 (Receive Coherence). A protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) satisfies Receive Coherence
(RC) when for every 𝑠1

p→q:𝑚−−−−−→ 𝑠2, 𝑠
′
1

r→q:𝑚−−−−−→ 𝑠′
2
∈ 𝑇 :

(r ≠ p∧∃𝑢 ∈ Γ∗q . 𝑠0

𝑢
=⇒
q

∗ 𝑠1, 𝑠
′
1
) =⇒ ∀𝑤 ∈ pref (L(S𝑠′

2

)). 𝑤⇓Σq ≠𝜀 ∨V(𝑤⇓p⊲q!_
)≠V(𝑤⇓q⊳p?_

)·𝑚) .



Characterizing Implementability of Global Protocols with Infinite States and Data 131:13

No Mixed Choice requires that roles cannot equivocate between sending and receiving in two

locally indistinguishable states.

Definition 4.3 (No Mixed Choice). A protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) satisfies No Mixed Choice

(NMC) when for every 𝑠1

p→q:𝑚−−−−−→ 𝑠2, 𝑠
′
1

r→p:𝑚−−−−−→ 𝑠′
2
∈ 𝑇 : (∃𝑢 ∈ Γ∗p . 𝑠0

𝑢
=⇒
p

∗ 𝑠1, 𝑠
′
1
) =⇒ ⊥ .

Our semantic characterization of protocol implementability is the conjunction of the above

three conditions. In contrast to the syntactic analysis in [89], our semantic approach is sound and

complete. In contrast to the sound and complete approach in [56], our implementability conditions

do not rely on synthesizing an implementation upfront.

Definition 4.4 (Coherence Conditions). A protocol satisfies Coherence Conditions (CC) when it

satisfies Send Coherence, Receive Coherence and No Mixed Choice.

The preciseness of CC is stated as follows.

Theorem 4.5. Let S be a protocol. Then, S is implementable if and only if it satisfies CC.

In the next two sections, we illustrate the key steps for proving Theorem 4.5. We refer the reader

to the extended version [58] for the complete proofs.

4.1 Soundness
Soundness requires us to show that if a protocol satisfies CC, then it is implementable. We begin

by echoing the observation made in several prior works [1, 56, 78] that for any global protocol,

there exists a canonical implementation consisting of one local implementation per participant. We

formally define what it means for an implementation to be canonical in our setting below.

Definition 4.6 (Canonical implementations). We say a CLTS {{𝑇p}}p∈P is a canonical implementation

for a protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) if for every p ∈ P, 𝑇p satisfies:
(i) ∀𝑤 ∈ Σ∗p . 𝑤 ∈ L(𝑇p) ⇔ 𝑤 ∈ L(S)⇓Σp , and (ii) pref (L(𝑇p)) = pref (L(S)⇓Σp ).

We first prove that following fact about canonical implementations of protocols satisfying NMC,

which states that the canonical implementations themselves do not exhibit mixed choice.

Lemma 4.7 (No Mixed Choice). Let S be a protocol satisfying NMC (Definition 4.3) and let

{{𝑇p}}p∈P be a canonical implementation for S. Let 𝑤𝑥1,𝑤𝑥2 ∈ pref (L(𝑇p)) with 𝑥1 ≠ 𝑥2 for some

p ∈ P. Then, 𝑥1 ∈ Σ! iff 𝑥2 ∈ Σ!.

We choose the canonical implementation as our existential witness to show that any protocol

satisfying CC is implementable. By the definition of implementability (Definition 3.3), soundness

amounts to showing the following three conditions:

(a) L(S) ⊆ L({{𝑇p}}p∈P), (b) L({{𝑇p}}p∈P) ⊆ L(S), and (c) {{𝑇p}}p∈P is deadlock-free.

Condition (a) states that any canonical implementation recognizes at least the global protocol

behaviors. This fact can be shown for any LTS and canonical CLTS, and does not rely on assumptions

about determinism or sender-drivenness, nor assumptions about the LTS satisfying CC.

Lemma 4.8 (Canonical implementation language contains protocol language). Let S be

an LTS and let {{𝑇p}}p∈P be a canonical implementation for S. Then, L(S) ⊆ L({{𝑇p}}p∈P).
Condition (b), on the other hand, states that any behavior recognized by the canonical implemen-

tation is a global protocol behavior, in other words, that the canonical CLTS does not add behaviors.

This is only true for protocols that satisfy CC.

Furthermore, the acceptance condition for infinite words in L(S) differs from that in {{𝑇p}}p∈P :
the latter accepts all infinite traces, whereas the former requires to show that an infinite word𝑤



131:14 E. Li, F. Stutz, T. Wies, D. Zufferey

satisfies𝑤 ⪯𝜔∼ 𝑤 ′ for some other infinite word𝑤 ′ ∈ L(S). Therefore, showing prefix set inclusion

is not sufficient, and we must reason about the finite and infinite case separately.

Lemma 4.9 (Global protocol language contains canonical implementation language).

Let S be a protocol satisfying CC and let {{𝑇p}}p∈P be a canonical implementation for S such that for

all𝑤 ∈ Σ∗
async

, if𝑤 is a trace of {{𝑇p}}p∈P , then 𝐼 (𝑤) ≠ ∅. Then, L({{𝑇p}}p∈P) ⊆ L(S).
Towards these ends, we adapt the key intermediate lemma from [56] to our setting, and show

the inductive invariant that every trace in the canonical implementation of a protocol satisfying

CC satisfies intersection set non-emptiness. Note that although our intermediate lemma statements

are similar to those in [56] in structure, [56] reasons about a particular implementation, namely

the subset construction obtained from the global type, whereas our proofs reason about any

canonical implementation of a global protocol that satisfies CC. As a result, the proof arguments

differ significantly.

We adapt the relevant definitions to our setting below.

Definition 4.10 (LTS intersection sets). Let S be an LTS. Let p be a participant and𝑤 ∈ Σ∗
async

be a

word. We define the set of possible runs R
S
p (𝑤) as all maximal runs of S that are consistent with

p’s local view of𝑤 :

R
S
p (𝑤) ≔ {𝜌 is a maximal run of S | 𝑤⇓Σp ≤ split(trace(𝜌))⇓Σp } .

We denote the intersection of the possible run sets for all participants as 𝐼 S (𝑤) ≔ ⋂
p∈P R

S
p (𝑤).

Definition 4.11 (Unique splitting of a possible run). Let S be an LTS, p a participant, and𝑤 ∈ Σ∗
async

a word. Let 𝜌 be a run in R
S
p (𝑤). We define the longest prefix of 𝜌 matching𝑤 :

𝛼 ′ ≔ max{𝜌 ′ | 𝜌 ′ ≤ 𝜌 ∧ split(trace(𝜌 ′))⇓Σp ≤ 𝑤⇓Σp } .

If 𝛼 ′ ≠ 𝜌 , we can split 𝜌 into 𝜌 = 𝛼 · 𝑠 𝑙−→ 𝑠′ · 𝛽 where 𝛼 ′ = 𝛼 · 𝑠 . , which we call the unique splitting

of 𝜌 for p matching𝑤 . Uniqueness follows from the maximality of 𝛼 ′.

For example, the unique splitting of 𝜌 = 𝑠1

p→q:m−−−−−→ 𝑠2

r→q:b1−−−−−→ 𝑠3

r→q:b2−−−−−→ 𝑠4

q→p:o−−−−−→ 𝑠5 for p

matching 𝑤 = r ⊲ q!b1. p ⊲ q!m is 𝛼 · 𝑠3

r→q:b2−−−−−→ 𝑠4 · 𝛽 , where 𝛼 = 𝑠1

p→q:m−−−−−→ 𝑠2

r→q:b1−−−−−→ 𝑠3 and

𝛽 = 𝑠4

q→p:o−−−−−→ 𝑠5.

Our intersection non-emptiness inductive invariant is stated below. The proof proceeds by

induction on the length of a prefix 𝑤 of the canonical implementation, and case splits based

on whether 𝑤 is extended by a send or receive action. Lemma 4.14 and Lemma 4.13 provide a

characterization for each case respectively.

Lemma 4.12 (Intersection set non-emptiness). Let S be a protocol satisfying CC, and let

{{𝑇p}}p∈P be a canonical implementation for S. Then, for every trace𝑤 ∈ Σ∗
async

of {{𝑇p}}p∈P , it holds
that 𝐼 (𝑤) ≠ ∅.

Lemma 4.13 (Receive events do not shrink intersection sets). Let S be a protocol satisfying

CC, and let {{𝑇p}}p∈P be a canonical implementation for S. Let𝑤𝑥 be a trace of {{𝑇p}}p∈P such that

𝑥 ∈ Σ?. Then, 𝐼 (𝑤) = 𝐼 (𝑤𝑥).

Lemma 4.14 (Send events preserve run prefixes). Let S be a protocol satisfying CC and

{{𝑇p}}p∈P be a canonical implementation for S. Let 𝑤𝑥 be a trace of {{𝑇p}}p∈P such that 𝑥 ∈ Σp,! for

some p ∈ P. Let 𝜌 be a run in 𝐼 (𝑤), and 𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽 be the unique splitting of 𝜌 for p with

respect to𝑤 . Then, there exists a run 𝜌 ′ in 𝐼 (𝑤𝑥) such that 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌 ′.



Characterizing Implementability of Global Protocols with Infinite States and Data 131:15

Finally, we show that protocols that satisfy CC and intersection set non-emptiness have deadlock-

free canonical implementations. The proof follows immediately from the following lemma and the

fact that CLTS are deterministic, and is thus omitted.

Lemma 4.15 (Channel compliance and intersection set non-emptiness implies prefix). Let

S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) be a protocol and let𝑤 ∈ Σ∗async be a word such that (i)𝑤 is channel-compliant,

and (ii) 𝐼 (𝑤) ≠ ∅. Then,𝑤 ∈ pref (L(S)).

Lemma 4.16 (Canonical implementation deadlock freedom). Let S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) be
a protocol satisfying CC and let {{𝑇p}}p∈P be a canonical implementation for S such that for all

𝑤 ∈ Σ∗
async

, if𝑤 is a trace of {{𝑇p}}p∈P , then 𝐼 (𝑤) ≠ ∅. Then, {{𝑇p}}p∈P is deadlock-free.

Soundness thus follows from the three conditions above.

Lemma 4.17 (Soundness of CC). Let S be a protocol. If S satisfies CC, then S is implementable.

4.2 Completeness
Completeness requires us to show that if a protocol is implementable, then it satisfies CC. We

prove completeness by modus tollens, and assume that a protocol S does not satisfy CC. We negate

SC, RC and NMC in turn: from the negation of SC we obtain a simultaneously reachable pair of

states in S such that a send event that is enabled in one is never enabled from the other. From

the negation of RC there exists a simultaneously reachable pair of states in S such that a receive

event that is enabled in one is also enabled in the other. From the negation of NMC we obtain

a simultaneously reachable pair of transitions where a participant is the sender in one and the

receiver in the other. We assume an arbitrary CLTS that implements S, and use these witnesses to

show that this CLTS must recognize a trace that is not a prefix in L(S), thereby either violating

protocol fidelity or deadlock freedom.

Lemma 4.18 (Completeness). Let S be a protocol. If S is implementable, then S satisfies CC.

An immediate consequence of the soundness and completeness of CC is the following fact about

the special case of binary protocols, when |P | = 2:

Lemma 4.19. Every binary protocol is implementable.

In the binary case, participant-based reachability is equivalent to standard reachability, because

both participants are involved in every synchronous communication. Because protocols are deter-

ministic, there exist no two distinct states in a binary protocol that are simultaneously reachable

for either participant, and thus CC holds vacuously.

4.3 Synthesis
When proving soundness, we chose the canonical implementation as our witness to implementabil-

ity. In other words, if a protocol satisfies CC, then the canonical implementation implements it.

When proving completeness, we showed that any implementation would cause a violation to proto-

col fidelity or deadlock-freedom. In other words, if a protocol violates CC, then no implementation

exists. Having established that CC precisely characterizes implementable protocols, we combine

these observations to yield the following corollary:

Corollary 4.20 (Canonical implementation is all you need). A protocol is implementable if

and only if the canonical implementation implements it.

For an implementable protocol, this fact serves as a criterion for synthesizing implementations:

any implementation that is canonical will suffice. For the general class of protocols, synthesis is



131:16 E. Li, F. Stutz, T. Wies, D. Zufferey

undecidable. However, for many expressive fragments of protocols that still feature infinite data,

e.g. corresponding to symbolic finite automata [20, 77] and certain classes of timed and register

automata [5, 13], one can simply use off-the-shelf determinization algorithms to compute canonical

implementations [4, 84, 85].

5 Checking Implementability
Having established that CC is precise for protocol implementability, we next present sound and

relatively complete algorithms to check CC for several protocol classes. We start with the most

general case of symbolic protocols before considering decidable classes of finite-state protocols.

5.1 Symbolic Protocols
In the remainder of the section, we fix a symbolic protocol S = (𝑆, 𝑅,Δ, 𝑠0, 𝜌0, 𝐹 ). We assume that the

concretization of S is a GCLTS (Definition 3.1). Additionally, we define two copies of the symbolic

protocol, denoted S1 and S2 that we will use in describing our symbolic implementability check.

Each copy S𝑖 = (𝑅𝑖 , 𝑆,Δ𝑖 , 𝜌𝑖 , 𝑠0, 𝐹 ) with 𝑖 ∈ {1, 2} is obtained from S by renaming each register 𝑟 to a

fresh register 𝑟𝑖 , each unique communication variable 𝑥 to 𝑥𝑖 , and substituting the new register and

communication variables into the transition constraints and initial register assignment accordingly;

the control states remain the same.

Because symbolic protocols describe concrete protocols with infinitely many states and transi-

tions, implementability cannot be checked explicitly using our CC characterization for protocols,

i.e. by iterating over all states and transitions. Instead, we present symbolic conditions that are

valid on the symbolic protocol if and only if its concrete protocol is implementable.

Theorem 5.1 (Symbolic Implementability). S is implementable if and only if it satisfies Symbolic

Send Coherence, Symbolic Receive Coherence, and Symbolic No Mixed Choice.

We now present these symbolic conditions, starting with Symbolic Send Coherence.

Send Coherence first requires us to characterize pairs of states in a protocol that are simultane-

ously reachable for each participant on some prefix in its local language. In the symbolic setting,

this amounts to the following: given a participant and a pair of control states (𝑠1, 𝑠2) in the symbolic

protocol, characterize the register assignments for pairs of concrete states (𝑠1, 𝜌1), (𝑠2, 𝜌2) that are
in the respective control states. The predicate prodreachp (𝑠1, 𝒓1, 𝑠2, 𝒓2) describes this for each p ∈ P
where 𝒓 𝒊 are vectors of the registers in 𝑅𝑖 obtained by ordering them according to some fixed total

order. We define this predicate as a least fixpoint as follows.

Definition 5.2 (Simultaneous reachability in product symbolic protocol). Let p ∈ P be a participant

and let 𝑠1, 𝑠
′
1
, 𝑠2, 𝑠

′
2
∈ 𝑆 . Then,

prodreachp (𝑠′1, 𝒓
′
1, 𝑠
′
2
, 𝒓 ′2) ≔𝜇 ( 𝑠′1 = 𝑠0 ∧ 𝑠′2 = 𝑠0 ∧ 𝒓 ′1 = 𝜌0 ∧ 𝒓 ′2 = 𝜌0 )

∨ (
∨

(𝑠1, r→s:𝑥1 {𝜑1 }, 𝑠′
1
) ∈Δ1

(𝑠2, r→s:𝑥2 {𝜑2 }, 𝑠′
2
) ∈Δ2

p=r∨p=s

∃𝑥1𝑥2𝒓1𝒓2 . prodreachp (𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ 𝜑2 ∧ 𝑥1 = 𝑥2 )

∨ (
∨

(𝑠1, r→s:𝑥1 {𝜑1 }, 𝑠′
1
) ∈Δ1 ∧ p≠r∧p≠s

∃𝑥1𝒓1 . prodreachp (𝑠1, 𝒓1, 𝑠
′
2
, 𝒓 ′2) ∧ 𝜑1 )

∨ (
∨

(𝑠2, r→s:𝑥2 {𝜑2 }, 𝑠′
2
) ∈Δ2 ∧ p≠r∧p≠s

∃𝑥2𝒓2 . prodreachp (𝑠′1, 𝒓
′
1, 𝑠2, 𝒓2) ∧ 𝜑2 ) .

The second top-level disjunct in the definition after the base case handles the cases where S1

and S2 synchronize on a common action involving p. The remaining two disjuncts correspond to

the cases where either S1 or S2 follows an 𝜀 transition.



Characterizing Implementability of Global Protocols with Infinite States and Data 131:17

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

p→q :𝑏

{
𝑏 = 0

∧𝑐′ = 0

}

r→p :𝑥 {⊤}

p→q :𝑏

{
𝑏 > 0

∧𝑐′ = 0

}
p→q :𝑐

{
𝑐 < 𝑏

∧𝑐′ = 𝑐 + 1

}
p→q :exit{𝑐 ≥ 𝑏}

r→p :𝑥 {⊤}

Fig. 14. Example where states 𝑞1 and 𝑞3 satisfy
Send Coherence for r.

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

p→q :𝑏

{
𝑏 = 0

∧𝑐′ = 0

}

r→p :𝑥 {⊤}

p→q :𝑏

{
𝑏 > 0

∧𝑐′ = 0

}
p→q :𝑐

{
𝑐 ≥ 0

∧𝑐′ = 𝑐 + 1

}
p→q :exit{𝑐 < 0}

r→p :𝑥 {⊤}

Fig. 15. Example where states 𝑞1 and 𝑞3 violate
Send Coherence for r.

Given a pair of simultaneously reachable states (𝑠1, 𝜌1), (𝑠2, 𝜌2) in p, Send Coherence now checks

whether all values 𝑥1 that can be sent to some q in (𝑠1, 𝜌1) can also be sent from (𝑠2, 𝜌2), modulo

following 𝜀 transitions to reach the actual state where p can send to q. We thus need to express

𝜀-reachability. We formalize the dual: the predicate unreach𝜀p,q (𝑠2, 𝒓2, 𝑥1) expresses that p cannot
reach any state where it may send 𝑥1 to q, by following 𝜀 transitions from symbolic state (𝑠2, 𝒓2).
This is formulated as a greatest fixpoint as follows:

Definition 5.3 (𝜀-unreachability of psending 𝑥 to q). For p, q ∈ P and 𝑠 ∈ 𝑆 , let
unreach𝜀p,q (𝑠, 𝒓, 𝑥) ≔𝜈 (

∧
(𝑠, p→q:𝑦{𝜑 }, 𝑠′ ) ∈Δ

¬𝜑 [𝑥/𝑦] ) ∧ (
∧

(𝑠, r→t:𝑦{𝜑 }, 𝑠′ ) ∈Δ
p≠r∧p≠t

∀𝑦 𝒓 ′ . 𝜑 ⇒ unreach𝜀p,q (𝑠′, 𝒓 ′, 𝑥) ) .

The first conjunct checks that whenever p reaches a state with an outgoing send transition to q,
it cannot send the value 𝑥 because the transition constraint 𝜑 is not satisfied. The second conjunct

checks that every outgoing 𝜀 transition is either disabled (¬𝜑 holds) or following the transition

does not reach an appropriate send state.

We combine the auxiliary predicates into our Symbolic Send Coherence condition.

Definition 5.4 (Symbolic Send Coherence). A symbolic protocol S satisfies Symbolic Send Coher-

ence when for each transition 𝑠1

p→q:𝑥1 {𝜑1 }−−−−−−−−−→ 𝑠′
1
∈ Δ1 and state 𝑠2 ∈ 𝑆 , the following is valid:

prodreachp (𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ unreach𝜀p,q (𝑠2, 𝒓2, 𝑥1) =⇒ ⊥ .

A keen reader may have noticed that because the symbolic characterization of Send Coherence

involves a greatest fixpoint, it is a liveness property. Thus, proving Send Coherence, in general,

involves a termination argument. To see this, consider the two protocols shown in Figs. 14 and 15.

Consider the pair of states (𝑞1, [𝑐 ↦→ 0]) and (𝑞3, [𝑐 ↦→ 0]) which are simultaneously reachable for r
in both protocols. The send transition for r enabled in 𝑞1 needs to be matched with a corresponding

send transition in an 𝜀-reachable state from 𝑞3. The only candidate states for this match in both

protocols are those at control state 𝑞4. These states are reachable from 𝑞3 if and only if the loop in

𝑞3 terminates, which it does in Fig. 14 but not in Fig. 15.

Receive Coherence is conditioned on two simultaneously reachable states (𝑠1, 𝒓1) and (𝑠2, 𝒓2) for
a participant q. It checks that if q can receive 𝑥 from p in the first state, q cannot also receive 𝑥 as the

first message from p in the second state, in which it can also receive from a different participant r,
unless p sending 𝑥 causally depends on q first receiving from r. We thus need to define a predicate

that captures whether 𝑥1 may be available as the first message from q to p, while tracking causal
dependencies. We introduce a family of predicates availp,q,B (𝑥1, 𝑠2, 𝒓2) for this purpose. Here, B



131:18 E. Li, F. Stutz, T. Wies, D. Zufferey

is used to track the causal dependencies. B tracks the set of participants that are blocked from

sending a message because their send action causally depends on q first receiving from r. The
predicates are defined as the least fixpoint of the following mutually recursive definition.

Definition 5.5 (Symbolic Availability).

availp,q,B (𝑥1, 𝑠, 𝒓) ≔𝜇 (
∨

(𝑠, r→t:𝑥 {𝜑 }, 𝑠′ ) ∈Δ
r∈B

r≠p∨t≠q

∃𝑥 𝒓 ′ . availp,q,B∪{t} (𝑥1, 𝑠
′, 𝒓 ′) ∧ 𝜑 )

∨ (
∨

(𝑠, r→t:𝑥 {𝜑 }, 𝑠′ ) ∈Δ
r∉B

r≠p∨t≠q

∃𝑥 𝒓 ′ . availp,q,B (𝑥1, 𝑠
′, 𝒓 ′) ∧ 𝜑 ) ∨ (

∨
(𝑠, p→q:𝑥 {𝜑 }, 𝑠′ ) ∈Δ

p∉B

𝜑 [𝑥1/𝑥] ) .

The last disjunct in the definition handles the cases where the message 𝑥1 from p is immediately

available to be received by q in symbolic state (𝑠, 𝒓) and p has not been blocked from sending. The

other two disjuncts handle the cases when 𝑥1 becomes available after some other message exchange

between r and t. Here, if r is blocked, then t also becomes blocked since it depends on r sending

before it can receive (the first disjunct). Otherwise, no participant is added to the blocked set (the

second disjunct).

With the available message predicate in place, we can now define Symbolic Receive Coherence.

Definition 5.6 (Symbolic Receive Coherence). A symbolic protocol S satisfies Symbolic Receive

Coherence when for every pair of transitions 𝑠1

p→q:𝑥1 {𝜑1 }−−−−−−−−−→ 𝑠′
1
∈ Δ1 and 𝑠2

r→q:𝑥2 {𝜑2 }−−−−−−−−−→ 𝑠′
2
∈ Δ2 with

p ≠ r:

prodreachq (𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ 𝜑2 ∧ availp,q,{q} (𝑥1, 𝑠
′
2
, 𝒓 ′2) =⇒ ⊥ .

Finally, No Mixed Choice is conditioned on two simultaneously reachable states (𝑠1, 𝒓1) and
(𝑠2, 𝒓2) with outgoing send and receive transitions for a participant p.

Definition 5.7 (Symbolic No Mixed Choice). A symbolic protocol S satisfies Symbolic No Mixed

Choice when for every pair of transitions 𝑠1

p→q:𝑥1 {𝜑1 }−−−−−−−−−→ 𝑠′
1
∈ Δ1 and 𝑠2

r→p:𝑥2 {𝜑2 }−−−−−−−−−→ 𝑠′
2
∈ Δ2:

prodreachp (𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ 𝜑2 =⇒ ⊥ .

We conclude this section with a discussion of how to check GCLTS assumptions, namely sink

finality, sender-driven choice, and deadlock-freedom, on a symbolic protocol. Sink finality can be

checked directly by examining the syntax of the symbolic protocol. Sender-driven choice without

determinism can likewise be checked directly on the states of the symbolic protocol. Determinism

and deadlock freedom are undecidable in general but can both be reduced to reachability. Thus, both

our Symbolic Coherence Conditions and GCLTS assumptions can be discharged using off-the-shelf

𝜇CLP solvers. We leave such an implementation to future work.

We next apply our framework to decidable fragments of symbolic protocols, some of which have

been studied in the literature.

5.2 Finite Protocols
We first consider finite protocols. Let S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) be a protocol with finite 𝑆 and𝑇 . Because

𝑆 and𝑇 are finite, we can transform CC into an imperative algorithm (see Algorithm 1) and use it to

check implementability directly. For checking Receive Coherence, we need to decide the predicate

availp,q,{q} (𝑚, 𝑠), which is defined like the symbolic availability predicate availp,q,{q} (𝑥, 𝑠, 𝒓), except
on protocols instead of symbolic protocols.



Characterizing Implementability of Global Protocols with Infinite States and Data 131:19

Algorithm 1 Check CC for finite protocols

⊲ Let LTS S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 )
⊲ Checking Send Coherence

for 𝑠1

p→q:𝑚−−−−−→ 𝑠2 ∈ 𝑇 do
for 𝑠 ≠ 𝑠1 ∈ 𝑆 do

if L(𝑆, Γp ⊎ {𝜀 },𝑇p, 𝑠0, {𝑠 }) ∩ L(𝑆, Γp ⊎ {𝜀 },𝑇p, 𝑠0, {𝑠1}) ≠ ∅ then
𝑏 ← ⊥
for 𝑠3

p→q:𝑚−−−−−→ 𝑠4 ∈ 𝑇 do 𝑏 ← 𝑏 ∨
(
𝑠

𝜀
=⇒
p
∗ 𝑠3

)
if ¬𝑏 then return ⊥

⊲ Checking Receive Coherence

for 𝑠1

p→q:𝑚−−−−−→ 𝑠2, 𝑠3

r→q:𝑚−−−−−→ 𝑠4 ∈ 𝑇, 𝑠1 ≠ 𝑠2, p ≠ r do
if L(𝑆, Γq ⊎ {𝜀 },𝑇q, 𝑠0, {𝑠1}) ∩ L(𝑆, Γq ⊎ {𝜀 },𝑇q, 𝑠0, {𝑠3}) ≠ ∅ then

if availp,q,{q} (𝑚,𝑠4 ) then return ⊥
⊲ Checking No Mixed Choice

for 𝑠1

p→q:𝑚−−−−−→ 𝑠2, 𝑠3

r→p:𝑚−−−−−→ 𝑠4 ∈ 𝑇, 𝑠1 ≠ 𝑠2 do
if L(𝑆, Γq ⊎ {𝜀 },𝑇q, 𝑠0, {𝑠1}) ∩ L(𝑆, Γq ⊎ {𝜀 },𝑇q, 𝑠0, {𝑠3}) ≠ ∅ then return ⊥

return ⊤

It is easy to see that Send Coherence and No Mixed Choice can be checked in time polynomial

in the size of S. However, the inclusion of availp,q,{q} (𝑚, 𝑠) as a subroutine for checking Receive
Coherence yields the following complexity result.

Theorem 5.8. Implementability of finite protocols is co-NP-complete.

Proof. To see that implementability is in co-NP, observe that violations of Send Coherence and

No Mixed Choice can be checked in NP, by guessing a participant p and a pair of states 𝑠1, 𝑠2 that

satisfy the respective preconditions, and verifying simultaneous reachability of 𝑠1 and 𝑠2 for p. For
Send Coherence, we guess an additional state 𝑠3 with an outgoing transition labeled with p→ q : 𝑚,

and check 𝜀-reachability from 𝑠1 to 𝑠3. For Receive Coherence, availp,q,{q} (𝑚, 𝑠2) can be checked in

NP by guessing a simple path in S from 𝑠2 to some state 𝑠′ with an outgoing transition labeled with

p→ q : 𝑚. We then evaluate availp,q,{q} (𝑚, 𝑠2) along that path, which can be done in polynomial

time. We can restrict ourselves to simple paths because the blocked set B monotonically increases

when traversing a path in S. Moreover, availp,q,{q} (𝑚, 𝑠2) is antitone in the blocked set.

We show NP-hardness of non-implementability via a reduction from the 3-SAT problem. Assume

a 3-SAT instance 𝜑 = 𝐶1 ∧ . . . ∧𝐶𝑘 . Let 𝑥1, . . . , 𝑥𝑛 be the variables occurring in 𝜑 and let 𝐿𝑖 𝑗 be the

𝑗th literal of clause 𝐶𝑖 , with 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 3. We construct a protocol S𝜑 over participants

P = {p, q, r, x1, x1, . . . , xn, xn}, such that 𝜑 is satisfiable iff S𝜑 is implementable. In particular, we

ensure that S𝜑 is implementable iff availp,q,{q} (𝑚, 𝑠) does not hold for some state 𝑠 in S𝜑 . The
protocol S𝜑 is constructed from the following subprotocols:

(1) Define a protocol S𝑋 representing a truth assignment to variables 𝑥𝑖 with states 𝑠1, . . . , 𝑠𝑛+1
as follows: for every 1 ≤ 𝑖 ≤ 𝑛 there are two paths of four transitions each between 𝑠𝑖 and

𝑠𝑖+1. The paths consist of transitions labeled with r → xi : ⊥, r → xi : ⊤, r → q : 𝑚𝑥𝑖 ,

q→ xi : 𝑚, and r→ xi : ⊥, r→ xi : ⊤, r→ q : 𝑚𝑥𝑖 , q→ xi : 𝑚, respectively.

(2) Define a protocol S𝐶 representing the clauses 𝐶𝑖 with states 𝑡1, . . . , 𝑡𝑘+1 as follows. For each
1 ≤ 𝑖 ≤ 𝑘 there are three paths of three transitions between each 𝑡𝑖 and 𝑡𝑖+1, one for each
1 ≤ 𝑗 ≤ 3, labeled with r→ 𝑠 : 𝑚 𝑗 , r→ p : 𝑚𝑟 , 𝑠 → p : 𝑚, where 𝑠 = x if 𝐿𝑖 𝑗 = 𝑥 and 𝑠 = x
if 𝐿𝑖 𝑗 = ¬𝑥 for 𝑥 ∈ {𝑥1, . . . , 𝑥𝑛}.

(3) Define a protocol S𝐹 with two states 𝑞′
𝑓
and 𝑞𝑓 and a single transition from 𝑞′

𝑓
to 𝑞𝑓 labeled

with p→ q : 𝑚.



131:20 E. Li, F. Stutz, T. Wies, D. Zufferey

(4) Define a protocolS𝑇 with five states𝑞1, . . . , 𝑞5, and two paths from𝑞1, respectively𝑞1

r→p:𝑚1−−−−−−→
𝑞2

r→q:𝑚−−−−−→ 𝑞3 and 𝑞1

r→p:𝑚2−−−−−−→ 𝑞4

p→q:𝑚−−−−−→ 𝑞5.

We merge all of the above protocols to obtain S𝜑 by identifying the state 𝑞3 with 𝑠1, 𝑠𝑛+1 with 𝑡1
and 𝑡𝑘+1 with 𝑞

′
𝑓
. The initial state is 𝑞1 and the final states are {𝑞5, 𝑞𝑓 }.

Observe that the size of S𝜑 is linear in the size of 𝜑 . Moreover, it is easy to check that S𝜑 is

indeed a GCLTS: all choices are sender-driven and deterministic, and final states are the only states

with no outgoing transitions, yielding sink-finality and deadlock-freedom.

We first establish that availp,q,{q} (𝑚,𝑞3) holds in S𝜑 iff 𝜑 is satisfiable. Observe that the blocked

set B computed by availp,q,{q} (𝑚,𝑞3) along a path between 𝑠1 and 𝑠𝑛+1 contains for each variable 𝑥𝑖
either xi or xi. The blocked setB thus encodes a truth assignment 𝜌B for the 𝑥𝑖 ’s where 𝜌B (𝑥𝑖 ) = ⊤
iff xi ∉ B. By construction of S𝑋 , for every truth assignment 𝜌 , there exists a path between 𝑠1 and

𝑠𝑛+1 such that 𝜌 = 𝜌B for the blocked set B computed along that path.

The paths between states 𝑡𝑖 and 𝑡𝑖+1 in subprotocol S𝐶 allow p to proceed and not be blocked if

one of the paths has a participant not in B, i.e. 𝐶𝑖 is satisfied by 𝜌B . Thus, a path from 𝑠𝑛+1 = 𝑡1
to 𝑡𝑘+1 = 𝑞′

𝑓
adds p to B at 𝑡𝑖 iff 𝜌B does not satisfy at least one of the clauses 𝐶𝑖 . Therefore,𝑚 is

available in 𝑞3 iff there exists a B such that 𝜌B satisfies 𝜑 .

It remains to show that S𝜑 is non-implementable iff availp,q,{q} (𝑚,𝑞3) holds in S𝜑 . We argue that

all participants except q have sufficient local information about the control flow of the protocol to

behave accordingly. Participant r dictates the control flow at every branching point of the protocol,

and thus is implementable. Participants x1, x1, . . . xn, xn learn the control flow via receivingmessages

from participant r, whose labels uniquely determine their next actions: receiving ⊤ means inaction,

receiving ⊥ means receive a further message from q, and receiving 𝑚 means send a message

encoding its own variable name to p. Participant p is likewise informed by r about the control flow,

and only sends𝑚 to q upon either receiving𝑚2 or top from r. Upon receiving r’s choice of disjunct
for each clause, it anticipates a message from the participant encoding that disjunct.

Participant q, on the other hand, is not informed by r about r’s initial choice at𝐺𝑥1
, and can locally

choose between receptions from p or r. In the case that availp,q,{q} (𝑚,𝑞3) holds, there exists a path
from𝐺 to G𝜑 in which p is not blocked. Thus, the message from p can be asynchronously reordered

to arrive in q’s channel such that both receptions are enabled, and qmay violate implementability by

receiving the message from p out of order. If availp,q,{q} (𝑚,𝑞3) does not hold, only one reception is

enabled, which uniquely informs q about r’s choice. In the case that the reception from p is enabled,
q terminates, otherwise it receives messages from r encoding participants to send further messages

to, and terminates upon receiving the final message from p. Thus, S𝜑 is non-implementable iff q

violates Receive Coherence for the transitions 𝑞2

r→q:𝑚−−−−−→ 𝑞3 and 𝑞4

p→q:𝑚−−−−−→ 𝑞5, i.e. availp,q,{q} (𝑚,𝑞3)
does not hold.

We obtain that S𝜑 is non-implementable iff availp,q,{q} (𝑚,𝑞3) holds in S𝜑 iff 𝜑 is satisfiable. □

Implementability for global multiparty session types was shown in [56] to be in PSPACE, with

the matching lower bound corrected in [57]. We show that, in fact, the same 3-SAT reduction can

be adapted to show co-NP-completeness of implementability for global multiparty session types.

Global Multiparty Session Types. Global types for MSTs [56] are defined by the grammar:

𝐺 F 0 |
∑︁
𝑖∈𝐼

p→q𝑖 :𝑚𝑖 .𝐺𝑖 | 𝜇𝑡 . 𝐺 | 𝑡

where p, q𝑖 range overP,𝑚𝑖 over a finite setV , and 𝑡 over a set of recursion variables. The semantics

of a global type G are defined using a finite state machine GAut(G) = (𝑄G, Γ𝑠𝑦𝑛𝑐 ⊎ {𝜀}, 𝛿G, 𝑞0,G, 𝐹G)
where 𝑄G is the set of all syntactic subterms in G together with the term 0, 𝛿G is the smallest set



Characterizing Implementability of Global Protocols with Infinite States and Data 131:21

containing (∑𝑖∈𝐼 p→q𝑖 :𝑚𝑖 .𝐺𝑖 , p→q𝑖 :𝑚𝑖 ,𝐺𝑖 ) for each 𝑖 ∈ 𝐼 , as well as (𝜇𝑡 .𝐺 ′, 𝜀,𝐺 ′) and (𝑡, 𝜀, 𝜇𝑡 .𝐺 ′)
for each subterm 𝜇𝑡 .𝐺 ′, 𝑞0,G = G and 𝐹G = {0}.
Each branch of a choice is assumed to be distinct: ∀𝑖, 𝑗 ∈ 𝐼 . 𝑖 ≠ 𝑗 ⇒ (q𝑖 ,𝑚𝑖 ) ≠ (q𝑗 ,𝑚 𝑗 ), and

the sender and receiver of an atomic action is assumed to be distinct: ∀𝑖 ∈ 𝐼 . p ≠ q𝑖 . Recursion is

guarded: in 𝜇𝑡 .𝐺 , there is at least one message between 𝜇𝑡 and each 𝑡 in 𝐺 .

Each 𝜀 transition in GAut(G) is the only transition from the state it originates from. This makes

removing them easy, yielding a protocol SG = (𝑄G, Γsync, 𝛿
′
G, 𝑞0,G, 𝐹G), where 𝛿 ′G contains only

transitions labeled with 𝑙 ∈ Γsync . It is easy to verify that SG is indeed a GCLTS.

Lemma 5.9. Implementability of global types is co-NP-complete.

Our reduction shows that deciding the availp,q,{q} (𝑚, 𝑠) predicate for global types is in co-NP,

which contradicts the polynomial time upper bound claimed in [55]. The proof of Lemma 5.9 can

be found in Appendix B of the extended version [58].

5.3 Symbolic Finite Protocols
Finally, we study symbolic representations of finite protocols. More precisely, we consider the frag-

ment of symbolic protocols whereV is the set of Booleans and all transition constraints 𝜑 are given

by propositional formulas. We show that for this class of symbolic protocols, the implementability

problem is PSPACE-complete.

Theorem 5.10. Implementability of symbolic finite protocols is PSPACE-complete.

Proof sketch. To show that implementability is in PSPACE, we show that a witness to the

negation of CC can be checked in nondeterministic polynomial space. This follows by a reduction to

the reachability problem for extended finite state machines, which is in PSPACE [36]. By Savitch’s

Theorem, it follows that the negation of CC is in PSPACE. Because PSPACE is closed under

complement and CC precisely characterizes implementability, it follows that implementability is

in PSPACE.

We show PSPACE-hardness of the implementability problem by a reduction from the PSPACE-

hard problem of deciding reachability for 1-safe Petri nets [27]. Let (𝑁,𝑀0) be a 1-safe Petri net,
with 𝑁 = (𝑆,𝑇 , 𝐹 ). Let𝑀 be a marking of 𝑁 .

We construct a symbolic protocol that is implementable iff 𝑁 does not reach 𝑀 . For ease of

exposition, we present this symbolic protocol as a symbolic dependent global type G𝑁 with the

understanding that the encoding of G𝑁 as a symbolic protocol is clear.

We first describe the construction ofG𝑁 . The outermost structure ofG𝑁 consists of a participant r
communicating a choice between two branches to s where the bottom branch solely consists of p
sending 𝑙 to q: G𝑁 ≔ (r→s :𝑚1{⊤}. 𝐺𝑡 + r→s :𝑚2{⊤}. p→q : 𝑙{⊤}. 0). Since p is not informed

about the choice of the branch taken by s, it will have to be able to match this send transition in

every run that follows the continuation 𝐺𝑡 of the top branch. We will construct 𝐺𝑡 such that this

match is possible iff𝑀 is reachable in 𝑁 .

In 𝐺𝑡 , participants r and s enter a loop that simulates 𝑁 :

𝐺𝑡 ≔ 𝜇𝑠 [𝑣 ≔ 𝑀0] . +

∑
𝑡 ∈𝑇 r→s :𝑚𝑡 {𝑣 ⇒ 𝑡−}. 𝑠 [𝑣 ≔ ((𝑣 ∧ ¬𝑡−) ∨ 𝑡+)]

r→s : restart{⊤}. 𝑠 [𝑣 ≔ 𝑀0]
r→s : reach𝑀 {𝑣 = 𝑀}. p→q :𝑙{⊤}. 0

The loop variable 𝑣 is a |𝑆 |-length bitvector that tracks the current marking of the net. It is initialized

to 𝑀0. Inside the loop, r has the following choices. First, it may pick any transition 𝑡 ∈ 𝑇 of the

net and send an𝑚𝑡 message to s, provided the transition is enabled for firing (i.e., the input places



131:22 E. Li, F. Stutz, T. Wies, D. Zufferey

of 𝑡 all contain a token: 𝑣 ⇒ 𝑡−). After this communication, 𝑣 is updated according to the fired

transition 𝑡 .

The last branch of the choice in the loop is enabled if 𝑣 is equal to𝑀 . Here, r can send reach𝑀 to s,
which gives p the opportunity to send the 𝑙 message to q, allowing it to match the send transition

from the lower branch in the top level choice of 𝐺𝑁 .

Finally, the middle branch allows r to abort the simulation at any point and start over. This

ensures that if the simulation ever reaches a dead state due to firing a transition that would render

𝑀 unreachable, it can recover by starting again from𝑀0. Thus, for all states of the simulator, p has

an 𝜀 path from that state to a state where it can send 𝑙 to q iff 𝑀 is reachable from 𝑀0 in 𝑁 . The

only other sender is r which makes all choices and, hence, never reaches two different states along

the same prefix trace, thus satisfying Send Coherence trivially. It follows that Send Coherence for

p holds iff 𝑀 is reachable from 𝑀0 in 𝑁 . To see that Receive Coherence holds, observe that no

participant receives messages from two different senders. No Mixed Choice similarly holds trivially.

𝐺𝑁 is deadlock-free because the branch in the loop of𝐺𝑡 where r sends the restart message is

always enabled. Moreover, it is easy to see that𝐺𝑁 is deterministic because each branch of a choice

sends a different message value.

In summary, 𝐺𝑁 is a GCLTS that is implementable iff 𝑁 reaches𝑀 . The size of G𝑁 is linear in

the size of 𝑁 , so we obtain the desired reduction. □

6 Related Work
Table 1 summarizes the most closely related works that address the implementability problem of

communication protocols with data refinements. We discuss these works in terms of key expressive

features and completeness of characterization.

Expressivity. All existing works in Table 1 effectively require history-sensitivity, which means

that a “predicate guaranteed by a [participant p] can only contain those interaction variables that

[p] knows” [7], see also [6, Def. 2]. As discussed in §4, syntactic approaches to analyzing variable

knowledge is overly conservative, and as a result no prior work can handle protocols such as

the example in Fig. 12. In a similar vein, Zhou et al. [89] impose the syntactic restriction that all

participants in a loop must be able to update all loop registers, which rules out loops like the one

in the two-bidder protocol (Fig. 1).

Furthermore, all prior works except for [34] employ the directed choice restriction, which is

strictly less general than sender-driven choice. Many of these works also feature separate constructs

for selecting branches and sending data. In our symbolic protocols, this is not necessary because

selecting branches can be modeled with equality predicates, as demonstrated by Fig. 7. Gheri et al.

[34] generalize choreography automata, which are finite-state LTSs with communciation events

as transition labels but without final states. One major difference between our work and theirs

lies in the treatment of interleavings. Unlike our protocol semantics, which are closed under the

Table 1. Comparison of related work (in chronological order)

Paper Communication
paradigm

Branching
restrictions

History
sensitivity Characterization

[7] asynchronous directed choice required incomplete

[6] asynchronous directed choice required incomplete

[81] synchronous directed choice required incomplete

[89] synchronous directed choice required incomplete

[34] synchronous well-sequencedness required unknown

this work asynchronous sender-driven choice not required relatively complete



Characterizing Implementability of Global Protocols with Infinite States and Data 131:23

indistinguishability relation ∼, inspired by Lamport’s happened-before relation, choreography

automata languages do not include any interleavings not present in the language. Setting aside

asynchronous traces, the protocol p→q :𝑚. r→s :𝑚. 0 in our setting would need to be represented

as p→ q :𝑚. r→ s :𝑚. 0 + r→ s :𝑚. p→ q :𝑚. 0 in their setting, and the following protocol

𝜇𝑡 . p→ q : 𝑚. r→ s : 𝑚. 𝑡 does not admit a representation as a choreography automaton. The

branching behaviors are restricted with a well-sequencedness condition [34, Def. 3.2], a condition

that has since been refined because it was shown to be flawed [29]. Majumdar et al. [61] showed

that well-formedness conditions on synchronous choreography automata do not generalize soundly

to the asynchronous setting.

Asynchronous communication is more challenging to analyze in general because it easily gives

rise to infinite-state systems. Zhou [88] conjectures that the framework in [89] “can be extended to

support asynchronous communication”, but does not conjecture if and how the projection operator

would change. Due to directed choice, the same projection operator may remain sound under

asynchronous semantics, because it rules out protocols where participants have a choice to receive

from different senders. However, it will also likely inherit the same sources of incompleteness

present in the synchronous setting.

In contrast to all aforementioned works, several works [9, 10, 17] allow to specify send and

receive events separately with “deconfined” global types. Deconfined global types are specified as

a parallel composition of local processes, and then checked for desirable correctness properties,

which were shown to be undecidable [17].

Completeness. Implementability is a thoroughly-studied problem in the high-level message se-

quence chart (HMSC) literature. HMSCs are a standardized formalism for describing communication

protocols in industry [82] and are well-studied in academia [30–32, 64, 74]. In the HMSC setting,

implementability is called safe realizability, and is defined with respect to the implementation model

of communicating finite state machines [8]. Similar to our setting, a canonical implementation

exists for any HMSC [1, Thm. 13]; unlike our setting, it is always computable. Therefore, existing

work has focused less on synthesis and more on checking implementability. Despite having only

finite states and data, HMSC implementability was shown to be undecidable in general [59]. Various

fragments have since been identified in which the problem regains decidability. Lohrey [59] showed

implementability to be EXPSPACE-complete for bounded HMSCs [3, 68] and globally-cooperative

HMSCs [33, 66]. These fragments restrict the communication topology of loops to be strongly and

weakly connected respectively. For HMSCs where every two consecutive communications share a

participant, implementability was shown to be PSPACE-complete [59].

In contrast, works that study comparably expressive protocol fragments to ours often sidestep

the implementability question. Instead, implementability is addressed in the form of syntactic

well-formedness conditions, as mentioned above, or indirectly through synthesis. None of the prior

works attempted to show completeness; it was later shown in [56, 78] that all but Gheri et al. [34]

are incomplete. Several works [6, 7, 81, 89] synthesize local implementations using the “classical”

projection frommultiparty session types. One kind of merge operator, called the plain merge, allows

only the two participants in a choice to exhibit different behavior on each branch, a condition

which is breached by our two-bidder protocol (Fig. 1). Zhou et al. [89] proves the soundness of

projection with plain merge, but implements a more permissive variant called full merge in the

toolchain. However, the projected local types are not guaranteed to be implementable: both Fig. 11

and Fig. 12 are projectable in [89]. Thus, the implementability problem is deferred to local types.

Our results show that synthesis is “as possible as” the determinization of the non-deterministic

underlying automata fragment. This means that implementations can be synthesized even for

expressive classes of protocols that correspond to e.g. symbolic finite automata [20, 77] and certain



131:24 E. Li, F. Stutz, T. Wies, D. Zufferey

classes of timed and register automata [5, 13] due to the existence of off-the-shelf determinization

algorithms for these classes [4, 84, 85].

Scalas and Yoshida [76] check safety properties of collections of local types by encoding the

properties as 𝜇-calculus formulas and then model checking the typing context against the speci-

fication. They focus primarily on finite-state typing contexts under synchronous semantics, and

thus all properties in their setting are decidable. For the asynchronous setting, only three sound

approximations of safety are proposed, one of which bounds channel sizes and thus falls back into

the finite-state setting.

Next, we discuss further related works on choreographic programming and binary session types.

Choreographic Programming. Choreographic programming [15, 35, 43] describes global message-

passing behaviors as programs rather than protocols, and therefore incorporate many more pro-

gramming language features that are abstracted away in our model, such as computation and

mutable state, in addition to features that our model cannot express, such as higher-order computa-

tions and delegation. Endpoint projection for choreographic programs, which shares a theoretical

basis with multiparty session type projection, then generates individual, executable programs

for each participant. The question of implementability, though undecidable in the presence of

such expressivity, remains relevant to the soundness of endpoint projections. We discuss three

approaches to endpoint projection. Pirouette [42] requires the programmer to specify explicit

synchronization messages to ensure that “different locations stay in lock-step with each other”,

and conservatively rejects programs that are underspecified in this regard. Pirouette provides a

mechanized proof of deadlock freedom for endpoint projections in Coq. Note that the claims of

soundness and completeness in [42] are not with respect to implementability, but with respect to the

translation via endpoint projection. HasChor [77] rules out non-implementability by automatically

incorporating location broadcasts when a choice is made. No formal correctness claims are made

in [77]. Jongmans and van den Bos [50] allow if- and while- statements to be annotated with a con-

junction of conditional choices for each participant, which expresses decentralized decision-making

in protocols. They show that their endpoint projection for well-formed choreographies guarantees

deadlock freedom and functional correctness. All aforementioned choreographic programming

works assume a synchronous network.

Binary Session Types with Refinements. Finally, we briefly mention work on binary session types

with refinements and data dependencies. In the binary setting, implementability is a less interesting

problem due to the inherent duality between the two protocol participants; the distinction between

global and local types is no longer meaningful. Griffith and Gunter [38] refine binary sessions

with basic data types, and shows decidability of the subtyping problem. Gommerstadt et al. [37]

applies a similar type system for runtime monitoring of binary communication. Thiemann and

Vasconcelos [80] propose a label-dependent binary session type framework which allows the

subsequent behavior of the protocol to depend on previous labels, which are drawn from a finite set.

Das and Pfenning [22] study the undecidable problem of local type equality, and provide a sound

approximate algorithm. Das et al. [21, 23] further apply binary session types with refinements to

resource analysis of blockchain smart contracts and amortized cost analysis.

Actris [39] embeds binary session types into the Iris framework [51]. The framework assumes

asynchronous communication with FIFO channels, and can verify programs that combine message-

passing concurrency and shared-memory concurrency. Actris has been extended with session type

subtyping (Actris 2.0 [40]) and with linearity to prove both preservation and progress (LinearAc-

tris [49]). Multris [41] is an extension of Actris in Iris to the multiparty setting. The message-passing

layer of Multris is more restricted than Actris: Multris assumes synchronous communication and



Characterizing Implementability of Global Protocols with Infinite States and Data 131:25

prohibits choice over channels: choices can only be made about message values between a given

sender and receiver. Multris takes a bottom-up approach [76] to correctness: given a collection of

local types, the type system checks that they can be safely combined. Multris guarantees protocol

fidelity but not progress.

Data-Availability Statement
The extended version of this paper containing complete proofs can be found at [58].

Acknowledgments
This work is supported in parts by the National Science Foundation under the grant agree-

ment 2304758 and by the Luxembourg National Research Fund (FNR) under the grant agreement

C22/IS/17238244/AVVA. We thank the anonymous OOPSLA 2025 reviewers for their comments

which improved the paper, and for identifying an erroneous claim in an earlier draft related to the

complexity analysis of MST implementability.



131:26 E. Li, F. Stutz, T. Wies, D. Zufferey

References
[1] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. 2003. Inference of Message Sequence Charts. IEEE Trans.

Software Eng. 29, 7 (2003), 623–633. https://doi.org/10.1109/TSE.2003.1214326

[2] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. 2005. Realizability and verification of MSC graphs. Theor.

Comput. Sci. 331, 1 (2005), 97–114. https://doi.org/10.1016/J.TCS.2004.09.034

[3] Rajeev Alur and Mihalis Yannakakis. 1999. Model Checking of Message Sequence Charts. In CONCUR ’99: Concurrency

Theory, 10th International Conference, Eindhoven, The Netherlands, August 24-27, 1999, Proceedings (Lecture Notes in

Computer Science, Vol. 1664), Jos C. M. Baeten and Sjouke Mauw (Eds.). Springer, 114–129. https://doi.org/10.1007/3-

540-48320-9_10

[4] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Pierre Carlier. 2018. When are stochastic transition systems

tameable? J. Log. Algebraic Methods Program. 99 (2018), 41–96. https://doi.org/10.1016/J.JLAMP.2018.03.004

[5] Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen. 2015. A game approach to determinize timed

automata. Formal Methods Syst. Des. 46, 1 (2015), 42–80. https://doi.org/10.1007/S10703-014-0220-1

[6] Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. 2012. A Multiparty Multi-session Logic. In Trustworthy

Global Computing - 7th International Symposium, TGC 2012, Newcastle upon Tyne, UK, September 7-8, 2012, Revised

Selected Papers (Lecture Notes in Computer Science, Vol. 8191), Catuscia Palamidessi and Mark Dermot Ryan (Eds.).

Springer, 97–111. https://doi.org/10.1007/978-3-642-41157-1_7

[7] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A Theory of Design-by-Contract for Distributed

Multiparty Interactions. In CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris,

France, August 31-September 3, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6269), Paul Gastin and François

Laroussinie (Eds.). Springer, 162–176. https://doi.org/10.1007/978-3-642-15375-4_12

[8] Daniel Brand and Pitro Zafiropulo. 1983. On Communicating Finite-State Machines. J. ACM 30, 2 (1983), 323–342.

https://doi.org/10.1145/322374.322380

[9] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2022. Asynchronous Sessions with Input

Races. In Proceedings of the 13th International Workshop on Programming Language Approaches to Concurrency and

Communication-cEntric Software, PLACES@ETAPS 2022, Munich, Germany, 3rd April 2022 (EPTCS, Vol. 356), Marco

Carbone and Rumyana Neykova (Eds.). 12–23. https://doi.org/10.4204/EPTCS.356.2

[10] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2024. Global Types and Event Structure Semantics

for Asynchronous Multiparty Sessions. Fundam. Informaticae 192, 1 (2024), 1–75. https://doi.org/10.3233/FI-242188

[11] David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. 2019. Distributed

programming using role-parametric session types in go: statically-typed endpoint APIs for dynamically-instantiated

communication structures. Proc. ACM Program. Lang. 3, POPL (2019), 29:1–29:30. https://doi.org/10.1145/3290342

[12] David Castro-Perez and Nobuko Yoshida. 2023. Dynamically Updatable Multiparty Session Protocols: Generating

Concurrent Go Code from Unbounded Protocols. In 37th European Conference on Object-Oriented Programming, ECOOP

2023, July 17-21, 2023, Seattle, Washington, United States (LIPIcs, Vol. 263), Karim Ali and Guido Salvaneschi (Eds.).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 6:1–6:30. https://doi.org/10.4230/LIPICS.ECOOP.2023.6

[13] Lorenzo Clemente, Slawomir Lasota, and Radoslaw Piórkowski. 2022. Determinisability of register and timed automata.

Log. Methods Comput. Sci. 18, 2 (2022). https://doi.org/10.46298/LMCS-18(2:9)2022

[14] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. 2015. A Gentle Introduction to

Multiparty Asynchronous Session Types. In Formal Methods for Multicore Programming - 15th International School on

Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2015, Bertinoro, Italy, June

15-19, 2015, Advanced Lectures (Lecture Notes in Computer Science, Vol. 9104), Marco Bernardo and Einar Broch Johnsen

(Eds.). Springer, 146–178. https://doi.org/10.1007/978-3-319-18941-3_4

[15] Luís Cruz-Filipe and Fabrizio Montesi. 2020. A core model for choreographic programming. Theor. Comput. Sci. 802

(2020), 38–66. https://doi.org/10.1016/j.tcs.2019.07.005

[16] Zak Cutner, Nobuko Yoshida, and Martin Vassor. 2022. Deadlock-free asynchronous message reordering in rust

with multiparty session types. In PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, Seoul, Republic of Korea, April 2 - 6, 2022, Jaejin Lee, Kunal Agrawal, and Michael F. Spear (Eds.). ACM,

246–261. https://doi.org/10.1145/3503221.3508404

[17] Francesco Dagnino, Paola Giannini, and Mariangiola Dezani-Ciancaglini. 2021. Deconfined Global Types for Asyn-

chronous Sessions. In Coordination Models and Languages - 23rd IFIP WG 6.1 International Conference, COORDINATION

2021, Held as Part of the 16th International Federated Conference on Distributed Computing Techniques, DisCoTec 2021,

Valletta, Malta, June 14-18, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 12717), Ferruccio Damiani and

Ornela Dardha (Eds.). Springer, 41–60. https://doi.org/10.1007/978-3-030-78142-2_3

[18] Haitao Dan, Robert M. Hierons, and Steve Counsell. 2010. Non-local Choice and Implied Scenarios. In 8th IEEE

International Conference on Software Engineering and Formal Methods, SEFM 2010, Pisa, Italy, 13-18 September 2010,

José Luiz Fiadeiro, Stefania Gnesi, and Andrea Maggiolo-Schettini (Eds.). IEEE Computer Society, 53–62. https:

https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1016/J.TCS.2004.09.034
https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.1016/J.JLAMP.2018.03.004
https://doi.org/10.1007/S10703-014-0220-1
https://doi.org/10.1007/978-3-642-41157-1_7
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1145/322374.322380
https://doi.org/10.4204/EPTCS.356.2
https://doi.org/10.3233/FI-242188
https://doi.org/10.1145/3290342
https://doi.org/10.4230/LIPICS.ECOOP.2023.6
https://doi.org/10.46298/LMCS-18(2:9)2022
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-030-78142-2_3
https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1109/SEFM.2010.14


Characterizing Implementability of Global Protocols with Infinite States and Data 131:27

//doi.org/10.1109/SEFM.2010.14

[19] Loris D’Antoni, Tiago Ferreira, Matteo Sammartino, and Alexandra Silva. 2019. Symbolic Register Automata. In

Computer Aided Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,

Proceedings, Part I (Lecture Notes in Computer Science, Vol. 11561), Isil Dillig and Serdar Tasiran (Eds.). Springer, 3–21.

https://doi.org/10.1007/978-3-030-25540-4_1

[20] Loris D’Antoni and Margus Veanes. 2017. The Power of Symbolic Automata and Transducers. In Computer Aided

Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I

(Lecture Notes in Computer Science, Vol. 10426), Rupak Majumdar and Viktor Kuncak (Eds.). Springer, 47–67. https:

//doi.org/10.1007/978-3-319-63387-9_3

[21] Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar. 2021. Resource-Aware Session

Types for Digital Contracts. In 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia,

June 21-25, 2021. IEEE, 1–16. https://doi.org/10.1109/CSF51468.2021.00004

[22] Ankush Das and Frank Pfenning. 2020. Session Types with Arithmetic Refinements. In 31st International Conference

on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference) (LIPIcs, Vol. 171), Igor

Konnov and Laura Kovács (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:18. https://doi.org/10.

4230/LIPICS.CONCUR.2020.13

[23] Ankush Das and Frank Pfenning. 2022. Rast: A Language for Resource-Aware Session Types. Log. Methods Comput.

Sci. 18, 1 (2022). https://doi.org/10.46298/LMCS-18(1:9)2022

[24] Jan de Muijnck-Hughes and Wim Vanderbauwhede. 2019. A Typing Discipline for Hardware Interfaces. In 33rd

European Conference on Object-Oriented Programming (ECOOP 2019) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

6:1–6:27. https://doi.org/10.4230/LIPIcs.ECOOP.2019.6

[25] Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2015. Practical interruptible

conversations: distributed dynamic verification with multiparty session types and Python. Formal Methods Syst. Des.

46, 3 (2015), 197–225. https://doi.org/10.1007/S10703-014-0218-8

[26] Volker Diekert and Grzegorz Rozenberg (Eds.). 1995. The Book of Traces. World Scientific. https://doi.org/10.1142/2563

[27] Javier Esparza and Mogens Nielsen. 1994. Decidability Issues for Petri Nets - a survey. J. Inf. Process. Cybern. 30, 3

(1994), 143–160.

[28] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R. Larus, and Steven Levi. 2006.

Language support for fast and reliable message-based communication in singularity OS. In Proceedings of the 2006

EuroSys Conference, Leuven, Belgium, April 18-21, 2006, Yolande Berbers and Willy Zwaenepoel (Eds.). ACM, 177–190.

https://doi.org/10.1145/1217935.1217953

[29] Alain Finkel and Étienne Lozes. 2023. Synchronizability of Communicating Finite State Machines is not Decidable.

Log. Methods Comput. Sci. 19, 4 (2023). https://doi.org/10.46298/LMCS-19(4:33)2023

[30] Thomas Gazagnaire, Blaise Genest, Loïc Hélouët, P. S. Thiagarajan, and Shaofa Yang. 2007. Causal Message Sequence

Charts. In CONCUR 2007 - Concurrency Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal, September

3-8, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4703), Luís Caires and Vasco Thudichum Vasconcelos

(Eds.). Springer, 166–180. https://doi.org/10.1007/978-3-540-74407-8_12

[31] Blaise Genest and Anca Muscholl. 2005. Message Sequence Charts: A Survey. In Fifth International Conference on

Application of Concurrency to System Design (ACSD 2005), 6-9 June 2005, St. Malo, France. IEEE Computer Society, 2–4.

https://doi.org/10.1109/ACSD.2005.25

[32] Blaise Genest, Anca Muscholl, and Doron A. Peled. 2003. Message Sequence Charts. In Lectures on Concurrency and

Petri Nets, Advances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on Petri Nets, ACPN 2003,

held in Eichstätt, Germany in September 2003. In addition to lectures given at ACPN 2003, additional chapters have been

commissioned] (Lecture Notes in Computer Science, Vol. 3098), Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg

(Eds.). Springer, 537–558. https://doi.org/10.1007/978-3-540-27755-2_15

[33] Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. 2006. Infinite-state high-level MSCs: Model-checking

and realizability. J. Comput. Syst. Sci. 72, 4 (2006), 617–647. https://doi.org/10.1016/j.jcss.2005.09.007

[34] Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. 2022. Design-By-Contract for Flexible

Multiparty Session Protocols. In 36th European Conference on Object-Oriented Programming, ECOOP 2022, June 6-10,

2022, Berlin, Germany (LIPIcs, Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 8:1–8:28. https://doi.org/10.4230/LIPICS.ECOOP.2022.8

[35] Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and Pascal Weisenburger.

2021. Multiparty Languages: The Choreographic and Multitier Cases (Pearl). In 35th European Conference on Object-

Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference) (LIPIcs, Vol. 194), Anders

Møller and Manu Sridharan (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:27. https://doi.org/10.

4230/LIPIcs.ECOOP.2021.22

https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1109/CSF51468.2021.00004
https://doi.org/10.4230/LIPICS.CONCUR.2020.13
https://doi.org/10.4230/LIPICS.CONCUR.2020.13
https://doi.org/10.46298/LMCS-18(1:9)2022
https://doi.org/10.4230/LIPIcs.ECOOP.2019.6
https://doi.org/10.1007/S10703-014-0218-8
https://doi.org/10.1142/2563
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.46298/LMCS-19(4:33)2023
https://doi.org/10.1007/978-3-540-74407-8_12
https://doi.org/10.1109/ACSD.2005.25
https://doi.org/10.1007/978-3-540-27755-2_15
https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.4230/LIPICS.ECOOP.2022.8
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22


131:28 E. Li, F. Stutz, T. Wies, D. Zufferey

[36] Patrice Godefroid and Mihalis Yannakakis. 2013. Analysis of Boolean Programs. In Tools and Algorithms for the

Construction and Analysis of Systems - 19th International Conference, TACAS 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings (Lecture Notes in

Computer Science, Vol. 7795), Nir Piterman and Scott A. Smolka (Eds.). Springer, 214–229. https://doi.org/10.1007/978-

3-642-36742-7_16

[37] Hannah Gommerstadt, Limin Jia, and Frank Pfenning. 2018. Session-Typed Concurrent Contracts. In Programming

Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture

Notes in Computer Science, Vol. 10801), Amal Ahmed (Ed.). Springer, 771–798. https://doi.org/10.1007/978-3-319-89884-

1_27

[38] Dennis Griffith and Elsa L. Gunter. 2013. LiquidPi: Inferrable Dependent Session Types. In NASA Formal Methods, 5th

International Symposium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings (Lecture Notes in Computer

Science, Vol. 7871), Guillaume Brat, Neha Rungta, and Arnaud Venet (Eds.). Springer, 185–197. https://doi.org/10.1007/

978-3-642-38088-4_13

[39] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: session-type based reasoning in

separation logic. Proc. ACM Program. Lang. 4, POPL (2020), 6:1–6:30. https://doi.org/10.1145/3371074

[40] Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. 2022. Actris 2.0: Asynchronous Session-Type Based

Reasoning in Separation Logic. Log. Methods Comput. Sci. 18, 2 (2022). https://doi.org/10.46298/LMCS-18(2:16)2022

[41] Jonas Kastberg Hinrichsen, Jules Jacobs, and Robbert Krebbers. 2024. Multris: Functional Verification of Multiparty

Message Passing in Separation Logic. (2024). https://jihgfee.github.io/papers/multris_manuscript.pdf

[42] Andrew K. Hirsch and Deepak Garg. 2021. Pirouette: Higher-Order Typed Functional Choreographies. CoRR

abs/2111.03484 (2021). arXiv:2111.03484 https://arxiv.org/abs/2111.03484

[43] Andrew K. Hirsch and Deepak Garg. 2022. Pirouette: higher-order typed functional choreographies. Proc. ACM

Program. Lang. 6, POPL (2022), 1–27. https://doi.org/10.1145/3498684

[44] Kohei Honda, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, Vasco Thudichum Vasconcelos, and Nobuko

Yoshida. 2012. Verification of MPI Programs Using Session Types. In Recent Advances in the Message Passing Interface -

19th European MPI Users’ Group Meeting, EuroMPI 2012, Vienna, Austria, September 23-26, 2012. Proceedings (Lecture

Notes in Computer Science, Vol. 7490), Jesper Larsson Träff, Siegfried Benkner, and Jack J. Dongarra (Eds.). Springer,

291–293. https://doi.org/10.1007/978-3-642-33518-1_37

[45] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In Proceedings

of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco,

California, USA, January 7-12, 2008, George C. Necula and Philip Wadler (Eds.). ACM, 273–284. https://doi.org/10.

1145/1328438.1328472

[46] Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verification Through Endpoint API Generation. In Funda-

mental Approaches to Software Engineering - 19th International Conference, FASE 2016, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceed-

ings (Lecture Notes in Computer Science, Vol. 9633), Perdita Stevens and Andrzej Wasowski (Eds.). Springer, 401–418.

https://doi.org/10.1007/978-3-662-49665-7_24

[47] Raymond Hu and Nobuko Yoshida. 2017. Explicit Connection Actions in Multiparty Session Types. In Fundamental

Approaches to Software Engineering - 20th International Conference, FASE 2017, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes

in Computer Science, Vol. 10202), Marieke Huisman and Julia Rubin (Eds.). Springer, 116–133. https://doi.org/10.1007/978-

3-662-54494-5_7

[48] Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. 2020. Multiparty Session Programming With Global

Protocol Combinators. In 34th European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17,

2020, Berlin, Germany (Virtual Conference) (LIPIcs, Vol. 166), Robert Hirschfeld and Tobias Pape (Eds.). Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 9:1–9:30. https://doi.org/10.4230/LIPICS.ECOOP.2020.9

[49] Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. 2024. Deadlock-Free Separation Logic: Linearity

Yields Progress for Dependent Higher-Order Message Passing. Proc. ACM Program. Lang. 8, POPL (2024), 1385–1417.

https://doi.org/10.1145/3632889

[50] Sung-Shik Jongmans and Petra van den Bos. 2022. A Predicate Transformer for Choreographies - Computing

Preconditions in Choreographic Programming. In Programming Languages and Systems - 31st European Symposium on

Programming, ESOP 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS

2022, Munich, Germany, April 2-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13240), Ilya Sergey (Ed.).

Springer, 520–547. https://doi.org/10.1007/978-3-030-99336-8_19

[51] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from

the ground up: A modular foundation for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20.

https://doi.org/10.1007/978-3-642-36742-7_16
https://doi.org/10.1007/978-3-642-36742-7_16
https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1007/978-3-319-89884-1_27
https://doi.org/10.1007/978-3-642-38088-4_13
https://doi.org/10.1007/978-3-642-38088-4_13
https://doi.org/10.1145/3371074
https://doi.org/10.46298/LMCS-18(2:16)2022
https://jihgfee.github.io/papers/multris_manuscript.pdf
https://arxiv.org/abs/2111.03484
https://arxiv.org/abs/2111.03484
https://doi.org/10.1145/3498684
https://doi.org/10.1007/978-3-642-33518-1_37
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.4230/LIPICS.ECOOP.2020.9
https://doi.org/10.1145/3632889
https://doi.org/10.1007/978-3-030-99336-8_19


Characterizing Implementability of Global Protocols with Infinite States and Data 131:29

https://doi.org/10.1017/S0956796818000151

[52] Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. 2022. Stay Safe Under Panic: Affine Rust Programming

with Multiparty Session Types (Artifact). Dagstuhl Artifacts Ser. 8, 2 (2022), 09:1–09:16. https://doi.org/10.4230/DARTS.

8.2.9

[53] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Commun. ACM 21, 7 (1978),

558–565. https://doi.org/10.1145/359545.359563

[54] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2018. A static verification framework for message

passing in Go using behavioural types. In Proceedings of the 40th International Conference on Software Engineering,

ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark

Harman (Eds.). ACM, 1137–1148. https://doi.org/10.1145/3180155.3180157

[55] Elaine Li, Felix Stutz, and Thomas Wies. 2024. Deciding Subtyping for Asynchronous Multiparty Sessions. In

Programming Languages and Systems - 33rd European Symposium on Programming, ESOP 2024, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11,

2024, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 14576), Stephanie Weirich (Ed.). Springer, 176–205.

https://doi.org/10.1007/978-3-031-57262-3_8

[56] Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. 2023. Complete Multiparty Session Type Projection with

Automata. In Computer Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023,

Proceedings, Part III (Lecture Notes in Computer Science, Vol. 13966), Constantin Enea and Akash Lal (Eds.). Springer,

350–373. https://doi.org/10.1007/978-3-031-37709-9_17

[57] Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. 2023. Complete Multiparty Session Type Projection with

Automata. CoRR abs/2305.17079 (2023). https://doi.org/10.48550/ARXIV.2305.17079 arXiv:2305.17079

[58] Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. 2025. Characterizing Implementability of Global Protocols

with Infinite States and Data. arXiv:2411.05722 [cs.PL] https://arxiv.org/abs/2411.05722

[59] Markus Lohrey. 2003. Realizability of high-level message sequence charts: closing the gaps. Theor. Comput. Sci. 309,

1-3 (2003), 529–554. https://doi.org/10.1016/J.TCS.2003.08.002

[60] RupakMajumdar, MadhavanMukund, Felix Stutz, and Damien Zufferey. 2021. Generalising Projection in Asynchronous

Multiparty Session Types. In 32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021,

Virtual Conference (LIPIcs, Vol. 203), Serge Haddad and Daniele Varacca (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 35:1–35:24. https://doi.org/10.4230/LIPICS.CONCUR.2021.35

[61] RupakMajumdar, MadhavanMukund, Felix Stutz, and Damien Zufferey. 2021. Generalising Projection in Asynchronous

Multiparty Session Types. CoRR abs/2107.03984 (2021). arXiv:2107.03984 https://arxiv.org/abs/2107.03984

[62] Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey. 2019. Motion Session Types for Robotic

Interactions (Brave New Idea Paper). In 33rd European Conference on Object-Oriented Programming, ECOOP 2019, July

15-19, 2019, London, United Kingdom (LIPIcs, Vol. 134), Alastair F. Donaldson (Ed.). Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 28:1–28:27. https://doi.org/10.4230/LIPIcs.ECOOP.2019.28

[63] Rupak Majumdar, Nobuko Yoshida, and Damien Zufferey. 2020. Multiparty motion coordination: from choreographies

to robotics programs. Proc. ACM Program. Lang. 4, OOPSLA (2020), 134:1–134:30. https://doi.org/10.1145/3428202

[64] Sjouke Mauw and Michel A. Reniers. 1997. High-level message sequence charts. In SDL ’97 Time for Testing, SDL, MSC

and Trends - 8th International SDL Forum, Evry, France, 23-29 September 1997, Proceedings, Ana R. Cavalli and Amardeo

Sarma (Eds.). Elsevier, 291–306.

[65] Fabrizio Montesi. 2023. Introduction to Choreographies. Cambridge University Press. https://doi.org/10.1017/

9781108981491

[66] RémiMorin. 2002. Recognizable Sets of Message Sequence Charts. In STACS 2002, 19th Annual Symposium on Theoretical

Aspects of Computer Science, Antibes - Juan les Pins, France, March 14-16, 2002, Proceedings (Lecture Notes in Computer

Science, Vol. 2285), Helmut Alt and Afonso Ferreira (Eds.). Springer, 523–534. https://doi.org/10.1007/3-540-45841-7_43

[67] Madhavan Mukund. 2002. From Global Specifications to Distributed Implementations. Springer US, Boston, MA, 19–35.

https://doi.org/10.1007/978-1-4757-6656-1_2

[68] Anca Muscholl and Doron A. Peled. 1999. Message Sequence Graphs and Decision Problems on Mazurkiewicz Traces.

In Mathematical Foundations of Computer Science 1999, 24th International Symposium, MFCS’99, Szklarska Poreba,

Poland, September 6-10, 1999, Proceedings (Lecture Notes in Computer Science, Vol. 1672), Miroslaw Kutylowski, Leszek

Pacholski, and Tomasz Wierzbicki (Eds.). Springer, 81–91. https://doi.org/10.1007/3-540-48340-3_8

[69] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. 2017. Timed runtime monitoring for multiparty conversations.

Formal Aspects Comput. 29, 5 (2017), 877–910. https://doi.org/10.1007/S00165-017-0420-8

[70] Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. 2018. A session type provider: compile-time

API generation of distributed protocols with refinements in F#. In Proceedings of the 27th International Conference on

Compiler Construction, CC 2018, February 24-25, 2018, Vienna, Austria, Christophe Dubach and Jingling Xue (Eds.).

ACM, 128–138. https://doi.org/10.1145/3178372.3179495

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.4230/DARTS.8.2.9
https://doi.org/10.4230/DARTS.8.2.9
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1007/978-3-031-57262-3_8
https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.48550/ARXIV.2305.17079
https://arxiv.org/abs/2305.17079
https://arxiv.org/abs/2411.05722
https://arxiv.org/abs/2411.05722
https://doi.org/10.1016/J.TCS.2003.08.002
https://doi.org/10.4230/LIPICS.CONCUR.2021.35
https://arxiv.org/abs/2107.03984
https://arxiv.org/abs/2107.03984
https://doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://doi.org/10.1145/3428202
https://doi.org/10.1017/9781108981491
https://doi.org/10.1017/9781108981491
https://doi.org/10.1007/3-540-45841-7_43
https://doi.org/10.1007/978-1-4757-6656-1_2
https://doi.org/10.1007/3-540-48340-3_8
https://doi.org/10.1007/S00165-017-0420-8
https://doi.org/10.1145/3178372.3179495


131:30 E. Li, F. Stutz, T. Wies, D. Zufferey

[71] Rumyana Neykova and Nobuko Yoshida. 2017. Multiparty Session Actors. Log. Methods Comput. Sci. 13, 1 (2017).

https://doi.org/10.23638/LMCS-13(1:17)2017

[72] Nicholas Ng, Nobuko Yoshida, and Kohei Honda. 2012. Multiparty Session C: Safe Parallel Programming with Message

Optimisation. In Objects, Models, Components, Patterns - 50th International Conference, TOOLS 2012, Prague, Czech

Republic, May 29-31, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7304), Carlo A. Furia and Sebastian Nanz

(Eds.). Springer, 202–218. https://doi.org/10.1007/978-3-642-30561-0_15

[73] Xinyu Niu, Nicholas Ng, Tomofumi Yuki, ShaojunWang, Nobuko Yoshida, andWayne Luk. 2016. EURECA compilation:

Automatic optimisation of cycle-reconfigurable circuits. In 26th International Conference on Field Programmable Logic

and Applications, FPL 2016, Lausanne, Switzerland, August 29 - September 2, 2016, Paolo Ienne, Walid A. Najjar,

Jason Helge Anderson, Philip Brisk, and Walter Stechele (Eds.). IEEE, 1–4. https://doi.org/10.1109/FPL.2016.7577359

[74] Abhik Roychoudhury, Ankit Goel, and Bikram Sengupta. 2012. Symbolic Message Sequence Charts. ACM Trans. Softw.

Eng. Methodol. 21, 2 (2012), 12:1–12:44. https://doi.org/10.1145/2089116.2089122

[75] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. 2017. A Linear Decomposition of Multiparty

Sessions for Safe Distributed Programming. In 31st European Conference on Object-Oriented Programming, ECOOP

2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74), Peter Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 24:1–24:31. https://doi.org/10.4230/LIPICS.ECOOP.2017.24

[76] Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types revisited. Proc. ACM Program. Lang.

3, POPL (2019), 30:1–30:29. https://doi.org/10.1145/3290343

[77] Gan Shen, Shun Kashiwa, and Lindsey Kuper. 2023. HasChor: Functional Choreographic Programming for All

(Functional Pearl). CoRR abs/2303.00924 (2023). https://doi.org/10.48550/ARXIV.2303.00924 arXiv:2303.00924

[78] Felix Stutz. 2023. Asynchronous Multiparty Session Type Implementability is Decidable - Lessons Learned from

Message Sequence Charts. In 37th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21,

2023, Seattle, Washington, United States (LIPIcs, Vol. 263), Karim Ali and Guido Salvaneschi (Eds.). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 32:1–32:31. https://doi.org/10.4230/LIPICS.ECOOP.2023.32

[79] Felix Stutz. 2024. Implementability of Asynchronous Communication Protocols - The Power of Choice. Ph. D. Dissertation.

Kaiserslautern University of Technology, Germany. https://kluedo.ub.rptu.de/frontdoor/index/index/docId/8077

[80] Peter Thiemann and Vasco T. Vasconcelos. 2020. Label-dependent session types. Proc. ACM Program. Lang. 4, POPL

(2020), 67:1–67:29. https://doi.org/10.1145/3371135

[81] Bernardo Toninho and Nobuko Yoshida. 2017. Certifying data in multiparty session types. J. Log. Algebraic Methods

Program. 90 (2017), 61–83. https://doi.org/10.1016/J.JLAMP.2016.11.005

[82] International Telecommunication Union. 1996. Z.120: Message Sequence Chart. Technical Report. International

Telecommunication Union. https://www.itu.int/rec/T-REC-Z.120

[83] Hiroshi Unno, Tachio Terauchi, Yu Gu, and Eric Koskinen. 2023. Modular Primal-Dual Fixpoint Logic Solving for

Temporal Verification. Proc. ACM Program. Lang. 7, POPL (2023), 2111–2140. https://doi.org/10.1145/3571265

[84] Margus Veanes and Nikolaj S. Bjørner. 2012. Symbolic Automata: The Toolkit. In Tools and Algorithms for the

Construction and Analysis of Systems - 18th International Conference, TACAS 2012, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings

(Lecture Notes in Computer Science, Vol. 7214), Cormac Flanagan and Barbara König (Eds.). Springer, 472–477. https:

//doi.org/10.1007/978-3-642-28756-5_33

[85] Margus Veanes, Peli de Halleux, and Nikolai Tillmann. 2010. Rex: Symbolic Regular Expression Explorer. In Third

International Conference on Software Testing, Verification and Validation, ICST 2010, Paris, France, April 7-9, 2010. IEEE

Computer Society, 498–507. https://doi.org/10.1109/ICST.2010.15

[86] Nobuko Yoshida. 2024. Programming Language Implementations with Multiparty Session Types. In Active Object

Languages: Current Research Trends, Frank S. de Boer, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, and

Eduard Kamburjan (Eds.). Lecture Notes in Computer Science, Vol. 14360. Springer, 147–165. https://doi.org/10.1007/

978-3-031-51060-1_6

[87] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. 2013. The Scribble Protocol Language. In

Trustworthy Global Computing - 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,

Revised Selected Papers (Lecture Notes in Computer Science, Vol. 8358), Martín Abadi and Alberto Lluch-Lafuente (Eds.).

Springer, 22–41. https://doi.org/10.1007/978-3-319-05119-2_3

[88] Fangyi Zhou. 2024. Refining Multiparty Session Types. Ph. D. Dissertation. Imperial College London.

[89] Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. 2020. Statically verified

refinements for multiparty protocols. Proc. ACM Program. Lang. 4, OOPSLA (2020), 148:1–148:30. https://doi.org/10.

1145/3428216

[90] Wieslaw Zielonka. 1987. Notes on Finite Asynchronous Automata. RAIRO Theor. Informatics Appl. 21, 2 (1987), 99–135.

https://doi.org/10.1051/ITA/1987210200991

https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1109/FPL.2016.7577359
https://doi.org/10.1145/2089116.2089122
https://doi.org/10.4230/LIPICS.ECOOP.2017.24
https://doi.org/10.1145/3290343
https://doi.org/10.48550/ARXIV.2303.00924
https://arxiv.org/abs/2303.00924
https://doi.org/10.4230/LIPICS.ECOOP.2023.32
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/8077
https://doi.org/10.1145/3371135
https://doi.org/10.1016/J.JLAMP.2016.11.005
https://www.itu.int/rec/T-REC-Z.120
https://doi.org/10.1145/3571265
https://doi.org/10.1007/978-3-642-28756-5_33
https://doi.org/10.1007/978-3-642-28756-5_33
https://doi.org/10.1109/ICST.2010.15
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1145/3428216
https://doi.org/10.1145/3428216
https://doi.org/10.1051/ITA/1987210200991


Characterizing Implementability of Global Protocols with Infinite States and Data 131:31

A Additional Material for Section 4
Lemma 4.7 (No Mixed Choice). Let S be a protocol satisfying NMC (Definition 4.3) and let

{{𝑇p}}p∈P be a canonical implementation for S. Let 𝑤𝑥1,𝑤𝑥2 ∈ pref (L(𝑇p)) with 𝑥1 ≠ 𝑥2 for some

p ∈ P. Then, 𝑥1 ∈ Σ! iff 𝑥2 ∈ Σ!.

Proof. Suppose by contradiction that 𝑥1 ∈ Σ? and 𝑥2 ∈ Σ!. Let 𝜌1 be a run in S such that

𝑤𝑥1 ≤ split(trace(𝜌1))⇓Σp . Let 𝛼1 · 𝑠1

𝑙1−→ 𝑠′
1
· 𝛽1 be the unique splitting of 𝜌 for p with respect

to 𝑤 . Then, p is the receiver in 𝑙1 and split(trace(𝛼1 · 𝑠1))⇓Σp = 𝑤 . Let 𝜌2 be a run in S such

that 𝑤𝑥2 ≤ split(trace(𝜌2))⇓Σp . Let 𝛼2 · 𝑠2

𝑙2−→ 𝑠′
2
· 𝛽2 be the unique splitting of 𝜌2 for p with

respect to𝑤 . Then, p is the sender in 𝑙2 and split(trace(𝛼2 · 𝑠2))⇓Σp = 𝑤 . If 𝑠1 = 𝑠2, then we find

a violation to the assumption that S is sender-driven. Hence, 𝑠1 ≠ 𝑠2 and we can instantiate NMC

(Definition 4.3) with 𝑠2

𝑙2−→ 𝑠′
2
, 𝑠1 and𝑤 to obtain a contradiction. □

Lemma 4.15 (Channel compliance and intersection set non-emptiness implies prefix). Let

S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹 ) be a protocol and let𝑤 ∈ Σ∗async be a word such that (i)𝑤 is channel-compliant,

and (ii) 𝐼 (𝑤) ≠ ∅. Then,𝑤 ∈ pref (L(S)).

Proof. Let 𝜌 be a run in 𝐼 (𝑤), and let 𝑤 ′ = split(trace(𝜌)) ∈ L(S). In the case that 𝐼 (𝑤)
contains finite runs, we can pick a finite 𝜌 . Otherwise, 𝜌 is infinite. We reason about each case in

turn.

Case: 𝜌 is a finite run. In the case that 𝜌 is a finite run, to show that𝑤 ∈ pref (L(S)) we need to

show the existence of a𝑤 ′′ ∈ L(S) such that𝑤 ≤ 𝑤 ′′. We construct such a𝑤 ′′ by constructing a 𝑢
such that in𝑤𝑢, all participants have completed their actions in 𝜌 , and furthermore𝑤𝑢 is channel-

compliant. Then, because𝑤 ′ is channel-compliant by construction, and for all participants p ∈ P,
it holds that𝑤𝑢⇓Σp = 𝑤 ′⇓Σp , by [60, Lemma 23] it follows that𝑤𝑢 ∼ 𝑤 ′, and thus𝑤𝑢 ∈ L(S).
For each participant p ∈ P, let 𝑦p be defined such that𝑤⇓Σp · 𝑦p = 𝑤 ′⇓Σp . We construct 𝑢 from

the 𝑦p for each participant, starting with 𝑢 = 𝜀. If there exists some participant in P such that

𝑦p [0] ∈ Σp,!, append 𝑦p to 𝑢 and update 𝑦p. If not, for all participants p ∈ P, 𝑦p [0] ∈ Σp,?. Each

symbol 𝑦p [0] for all participants appears in 𝑣 . Let 𝑖p denote for each participant the index in 𝑤 ′

such that𝑤 ′ [𝑖] = 𝑦p [0]. Let r be the participant with the minimum index 𝑖r: append 𝑦r to 𝑢 and

update 𝑦r. Termination is guaranteed by the strictly decreasing measure of

∑
p∈P |𝑦p |. Furthermore,

it is clear that upon termination, for all participants p ∈ P,𝑤𝑢⇓Σp = 𝑤 ′⇓Σp .
We argue that𝑤𝑢 satisfies the inductive invariant of channel compliancy. In the case where 𝑢

is extended with a send action, channel compliancy is trivially re-established. In the receive case,

channel compliancy is re-established by the fact that the append order for receive actions follows

that in 𝑣 , which is channel-compliant by construction.

Case: 𝜌 is an infinite run. In the case that 𝜌 is a infinite run, to show that 𝑤 ∈ pref (L(S)) we
likewise need to show the existence of a𝑤 ′′ ∈ L(S) such that𝑤 ≤ 𝑤 ′′. Like before, we construct
a 𝑢 and show that𝑤𝑢 ∈ L(S). However, unlike before, we cannot rely on the fact that𝑤𝑢 ∼ 𝑤 ′ to
show that 𝑤𝑢 ∈ L(S), because 𝑤 ′ is an infinite word and [60, Lemma 23] applies only to finite

words. Instead, we must prove that𝑤𝑢 ∈ L(S) by the definition of infinite word membership in

L(S), namely:𝑤𝑢 ⪯𝜔∼ 𝑤 ′. By the definition of ⪯𝜔∼ , it further suffices to show that:

∀𝑣 ≤ 𝑤𝑢, ∃𝑣 ′ ≤ 𝑤 ′, 𝑢′ ∈ Σ∗
async

. 𝑣𝑢′ ∼ 𝑣 ′ .

For each participant p ∈ P, let 𝜌p be defined as the largest prefix of 𝜌 such that split(trace(𝜌p))⇓Σp =
𝑤⇓Σp . Let s be the participant with the maximum |𝜌s | in P. Clearly, 𝜌s ≤ 𝜌 . Let 𝛽 be defined such

that 𝜌 = 𝜌s · 𝛽 . We split the construction of 𝑢 into two parts: let 𝑢 = 𝑢1𝑢2. We construct 𝑢1 as



131:32 E. Li, F. Stutz, T. Wies, D. Zufferey

above, by appending uncompleted actions in 𝜌s, ordering send events before receive events, and

further ordering receive events by the order in which they appear in 𝜌s. Then, upon termina-

tion, 𝑤𝑢1 is channel-compliant and satisfies for all p ∈ P, 𝑤𝑢1⇓Σp = split(trace(𝜌s))⇓Σp . Let
𝑢2 = split(trace(𝛽)).

We now show that𝑤𝑢1𝑢2 ⪯𝜔∼ 𝑤 ′.
Let 𝑣 be an arbitrary prefix of𝑤𝑢1𝑢2. If 𝑣 ≤ 𝑤𝑢1, we pick 𝑣

′ = split(trace(𝜌s)) ≤ 𝑤 ′ and 𝑢′ ∈
Σasync∗ to be such that 𝑣𝑢′ = 𝑤𝑢1. Otherwise, if𝑤𝑢1 < 𝑣 , let 𝜌 ′ be defined as the smallest prefix of 𝜌

such that for all participants p ∈ P, 𝑣⇓Σp = split(trace(𝜌 ′))⇓Σp . We pick 𝑣 ′ = split(trace(𝜌 ′)).
Because 𝑣 is channel-compliant, we can repeat the reasoning in the finite case to extend 𝑣 with 𝑢′

and apply [60, Lemma 23] to conclude that 𝑣𝑢′ ∼ 𝑣 ′. □

Lemma 4.8 (Canonical implementation language contains protocol language). Let S be

an LTS and let {{𝑇p}}p∈P be a canonical implementation for S. Then, L(S) ⊆ L({{𝑇p}}p∈P).

Proof. Let𝑤 be a word in L(S). Prior to case splitting on whether𝑤 is a finite or infinite word,

we establish a claim that is used in both cases.

Claim 1. pref (L(S)) ⊆ pref (L({{𝑇p}}p∈P)). Let𝑤 ∈ pref (L(S)).We prove that𝑤 ∈ pref (L({{𝑇p}}p∈P))
via structural induction on 𝑤 . The base case, 𝑤 = 𝜀, is trivial. For the inductive step, let 𝑤𝑥 ∈
pref(L(S)). From the induction hypothesis, 𝑤 ∈ pref(L{{𝑇p}}p∈P). It suffices to show that the

transition labeled with 𝑥 is enabled for the active participant in 𝑥 . Let (®𝑠, 𝜉) denote the {{𝑇p}}p∈P
configuration reached on𝑤 . In the case that 𝑥 ∈ Σ!, let 𝑥 = p ⊲ q!𝑚. The existence of an outgoing

transition

p⊲q!𝑚−−−−→ from ®𝑠p follows from the fact that pref (L(S))⇓Σp ⊆ pref (L(𝑇p)) (Definition 4.6).

The fact that𝑤𝑥 ∈ pref(L{{𝑇p}}p∈P) follows immediately from this and the fact that send transitions

in a CLTS are always enabled. In the case that 𝑥 ∈ Σ?, let 𝑥 = p ⊳ q?𝑚. We obtain an outgoing

transition

p⊳q?𝑚−−−−−→ from ®𝑠p analogously. We additionally need to show that 𝜉 (q, p) contains𝑚 at the

head. This follows from the fact that𝑤 is channel-compliant (Proposition A.1) and the induction

hypothesis. This concludes our proof of prefix set inclusion. End Proof of Claim 1.

Case: 𝑤 ∈ Σ∗
async

. In the finite case, it remains to show that {{𝑇p}}p∈P reaches a final configuration

on𝑤 . From the canonicity of {{𝑇p}}p∈P , it holds that all states in ®𝑠 are final. From the fact that all

finite words in L(S) contain matching receive events, all channels in 𝜉 are empty.

Case: 𝑤 ∈ Σ𝜔
async

. The infinite case when𝑤 ∈ Σ𝜔
async

is immediate from Claim 1. □

Lemma 4.9 (Global protocol language contains canonical implementation language).

Let S be a protocol satisfying CC and let {{𝑇p}}p∈P be a canonical implementation for S such that for

all𝑤 ∈ Σ∗
async

, if𝑤 is a trace of {{𝑇p}}p∈P , then 𝐼 (𝑤) ≠ ∅. Then, L({{𝑇p}}p∈P) ⊆ L(S).

Proof. Let𝑤 ∈ L{{𝑇p}}p∈P . We again case split on whether𝑤 is a finite or infinite word.

Case: 𝑤 ∈ Σ∗. First, we establish that 𝑤 is terminated. Let (®𝑠, 𝜉) be the {{𝑇p}}p∈P configuration

reached on𝑤 . Because𝑤 is a finite, maximal word in L({{𝑇p}}p∈P), it holds that all states in ®𝑠 are
final, and all channels in 𝜉 are empty. Therefore, no receive transitions are enabled from (®𝑠, 𝜉). We

argue that no send transitions are enabled from (®𝑠, 𝜉) either. Suppose by contradiction that there

exists an outgoing transition ®𝑠p
p⊲q!𝑚−−−−→ 𝑠′ ∈ 𝑇p for participant p. Then,𝑤⇓Σp · p ⊲ q!𝑚 ∈ pref (L(𝑇p)),

and by the canonicity of𝑇p,𝑤⇓Σp · p ⊲ q!𝑚 ∈ pref (L(S))⇓Σp . Then, there exists a maximal run 𝜌 ′ in
S such that𝑤⇓Σp · p ⊲ q!𝑚 ≤ split(trace(𝜌 ′))⇓Σp . Furthermore, there exists a finite, maximal run

𝜌 𝑓 𝑖𝑛 in S such that𝑤⇓Σp = split(trace(𝜌))⇓Σp . Let 𝑠𝑓 𝑖𝑛 be the last state in 𝜌 𝑓 𝑖𝑛 . By assumption,

𝑠𝑓 𝑖𝑛 ∈ 𝐹 . Let 𝛼 · 𝑠1

p→q:𝑚−−−−−→ 𝑠2 · 𝛽 be the unique splitting of 𝜌 ′ for p with respect to 𝑤 . Then, 𝑠1



Characterizing Implementability of Global Protocols with Infinite States and Data 131:33

and 𝑠𝑓 𝑖𝑛 are simultaneously reachable for p on prefix 𝑤⇓Σp . From SC, there exists a 𝑠′
2
such that

𝑠𝑓 𝑖𝑛
p→q:𝑚
======⇒

p

∗ 𝑠′
2
. We find a contradiction to the assumption that final states in S do not have

outgoing transitions.

Next, we show that for every 𝜌 ∈ 𝐼 (𝑤), it holds that for every p ∈ P,𝑤⇓Σp = split(trace(𝜌))⇓Σp .
This implies that there exist no infinite runs in 𝐼 (𝑤). Suppose by contradiction that there exists

a run 𝜌 ∈ 𝐼 (𝑤) and a non-empty set of participants Q such that for every r ∈ Q, it holds that
𝑤⇓Σr <

(
split(trace(𝜌))

)
⇓Σr (*). Given a participant p, let 𝜌p denote the largest prefix of 𝜌 that

contains p’s local view of𝑤 . Formally,

𝜌p =𝑚𝑎𝑥{𝜌 ′ | 𝜌 ′ ≤ 𝜌 ∧ split(trace(𝜌 ′))⇓Σp = 𝑤⇓Σp } .

Note that due to maximality, the next transition in 𝜌 after 𝜌p must have p as its active participant.

Let q be the participant in S for whom 𝜌q is the smallest. From the canonicity of𝑇q and (*), it follows

that ®𝑠q has outgoing transitions. If ®𝑠q has outgoing send transitions, then we reach a contradiction

to the fact that𝑤 is terminated. If ®𝑠q has outgoing receive transitions, it must be the case that the

next transition in 𝜌 after 𝜌q is of the form p→ q :𝑚 for some p and 𝑚. From the fact that q is

the participant with the smallest 𝜌q, we know that 𝜌q < 𝜌p, and from the FIFO property of CLTS

channels it follows that𝑚 is in 𝜉 (p, q). Then, the receive transition is enabled for q, and we again

reach a contradiction to the fact that𝑤 is terminated.

Thus, we can pick any finite run 𝜌 ∈ 𝐼 (𝑤) which is maximal by definition, and invoke [60,

Lemma 23] to conclude that split(trace(𝜌)) ∼ 𝑤 , and thus𝑤 ∈ L(S).

Case: 𝑤 ∈ Σ∞. By the semantics of L(S), to show𝑤 ∈ L(S) it suffices to show:

∃𝑤 ′ ∈ Σ𝜔 . 𝑤 ′ ∈ split(L(S)) ∧𝑤 ⪯𝜔∼ 𝑤 ′ .

Claim.

⋂
𝑢≤𝑤 𝐼 (𝑢) contains an infinite run.

First, we show that there exists an infinite run in S. We apply König’s Lemma to an infinite tree

where each vertex corresponds to a finite run. We obtain the vertex set from the intersection sets

of𝑤 ’s prefixes; each prefix “contributes” a set of finite runs. Formally, for each prefix 𝑢 ≤ 𝑤 , let 𝑉𝑢
be defined as:

𝑉𝑢 ≔
⋃

𝜌𝑢 ∈𝐼 (𝑢 )
min{𝜌 ′ | 𝜌 ′ ≤ 𝜌𝑢 ∧ ∀p ∈ P . 𝑢⇓Σp ≤ split(trace(𝜌 ′))⇓Σp } .

By the assumption that 𝐼 (𝑢) ≠ ∅, 𝑉𝑢 is guaranteed to be non-empty. We construct a tree T𝑤 (𝑉 , 𝐸)
with 𝑉 ≔

⋃
𝑢≤𝑤 𝑉𝑢 and 𝐸 ≔ {(𝜌1, 𝜌2) | 𝜌1 ≤ 𝜌2}. The tree is rooted in the empty run, which

is included in 𝑉 by the prefix 𝜀. 𝑉 is infinite because there are infinitely many prefixes of 𝑤 . T𝑤
is finitely branching due to the fact that S is deterministic: while there can be infinitely many

transitions from a given state in 𝑆 , there are only finitely many transitions from a given state in 𝑆

on a particular transition label. In fact, there is only a single transition. Therefore, we can apply

König’s Lemma to obtain a ray in T𝑤 representing an infinite run in S.
Let 𝜌 ′ be such an infinite run. We now show that 𝜌 ′ ∈ ⋂𝑢≤𝑤 𝐼 (𝑢). Let 𝑣 be a prefix of𝑤 . To show

that 𝜌 ′ ∈ 𝐼 (𝑣), it suffices to show that one of the vertices in 𝑉𝑣 lies on 𝜌 ′. In other words,

𝑉𝑣 ∩ {𝑣 | 𝑣 ∈ 𝜌 ′} ≠ ∅ .

Assume by contradiction that 𝜌 ′ passes through none of the vertices in 𝑉𝑣 . Then, for any 𝑢
′ ≥ 𝑢,

because intersection sets are monotonically decreasing, it must be the case that 𝜌 ′ passes through
none of the vertices in 𝑉 ′𝑢 . Therefore, 𝜌

′
can only pass through vertices in 𝑉 ′′𝑢 , where 𝑢′′ ≤ 𝑢.

However, the set

⋃
𝑢′′≤𝑢 𝑉

′′
𝑢 has finite cardinality. We reach a contradiction, concluding our proof

of the above claim.



131:34 E. Li, F. Stutz, T. Wies, D. Zufferey

Let 𝜌 ′ ∈ ⋂
𝑢≤𝑤 𝐼 (𝑢), and let 𝑤 ′ = split(trace(𝜌 ′)). It is clear that 𝑤 ′ ∈ Σ𝜔

async
and 𝑤 ′ ∈

split(L(S)). It remains to show that𝑤 ⪯𝜔∼ 𝑤 ′. By the definition of ⪯𝜔∼ , it further suffices to show

that:

∀𝑢 ≤ 𝑤, ∃𝑢′ ≤ 𝑤 ′, 𝑣 ∈ Σ∗
async

. 𝑢𝑣 ∼ 𝑢′ .

Let𝑢 be an arbitrary prefix of𝑤 . Because by definition 𝜌 ′ ∈ 𝐼 (𝑢), it holds that𝑢⇓Σp ≤ split(trace(𝜌 ′))⇓Σp .
For each participant p ∈ P, let 𝜌 ′p be defined as the largest prefix of 𝜌 ′ such that split(trace(𝜌 ′p))⇓Σp =

𝑢⇓Σp . Such a run is well-defined by the fact that 𝑢 is a prefix of an infinite word𝑤 , and there exists

a longer prefix 𝑣 such that 𝑢 ≤ 𝑣 and 𝑣⇓Σp ≤ split(trace(𝜌 ′))⇓Σp .
Let s be the participant with the maximum |𝜌 ′s | in P. Let 𝑢′ = split(trace(𝜌 ′s)). Clearly,

𝑢′ ≤ 𝑤 ′. Because 𝑢′ is split(trace(𝜌 ′s)) for the participant with the longest 𝜌 ′s, it holds for all
participants p ∈ P that 𝑢⇓Σp ≤ 𝑢′⇓Σp . Then, there must exist 𝑦p ∈ Σ∗p such that

𝑢⇓Σp · 𝑦p = 𝑢′⇓Σp .

Let 𝑦p be defined in this way for each participant. We construct 𝑣 ∈ Σ∗
async

such that 𝑢𝑣 ∼ 𝑢′. Let
𝑣 be initialized with 𝜀. If there exists some participant in P such that 𝑦p [0] ∈ Σp,!, append 𝑦p to 𝑣

and update 𝑦p. If not, for all participants p ∈ P, 𝑦p [0] ∈ Σp,?. Each symbol 𝑦p [0] for all participants
appears in 𝑢′. Let 𝑖p denote for each participant the index in 𝑢′ such that 𝑢′ [𝑖] = 𝑦p [0]. Let r be the

participant with the minimum index 𝑖r. Append 𝑦r to 𝑣 and update 𝑦r. Termination is guaranteed

by the strictly decreasing measure of

∑
p∈P |𝑦p |.

We argue that 𝑢𝑣 satisfies the inductive invariant of channel compliancy. In the case where 𝑣

is extended with a send action, channel compliancy is trivially re-established. In the receive case,

channel compliancy is re-established by the fact that the append order for receive actions follows

that in 𝑢′, which is channel-compliant by construction. We conclude that 𝑢𝑣 ∼ 𝑢′ by applying [60,

Lemma 22]. □

Lemma 4.12 (Intersection set non-emptiness). Let S be a protocol satisfying CC, and let

{{𝑇p}}p∈P be a canonical implementation for S. Then, for every trace𝑤 ∈ Σ∗
async

of {{𝑇p}}p∈P , it holds
that 𝐼 (𝑤) ≠ ∅.

Proof. We prove the claim by induction on the length of𝑤 .

Base Case. 𝑤 = 𝜀. The trace 𝑤 = 𝜀 is trivially consistent with all maximal runs, and 𝐼 (𝑤)
therefore contains all maximal runs. By assumption, S contains at least one maximal run. Thus,

𝐼 (𝑤) is non-empty.

Induction Step. Let𝑤𝑥 be an extension of𝑤 by 𝑥 ∈ Σasync .

The induction hypothesis states that 𝐼 (𝑤) ≠ ∅. To re-establish the induction hypothesis, we need

to show 𝐼 (𝑤𝑥) ≠ ∅. We proceed by case analysis on whether 𝑥 is a receive or send event.

Send Case. Let 𝑥 = p ⊲ q!𝑚. By Lemma 4.14, there exists a run in 𝐼 (𝑤𝑥) that shares a prefix with a

run in 𝐼 (𝑤). 𝐼 (𝑤𝑥) ≠ ∅ again follows immediately.

Receive Case. Let 𝑥 = p ⊳ q?𝑚. By Lemma 4.13, 𝐼 (𝑤𝑥) = 𝐼 (𝑤). 𝐼 (𝑤𝑥) ≠ ∅ follows trivially from

the induction hypothesis and this equality. □

Proposition A.1 (CLTS traces are channel-compliant). Let {{𝑇p}}p∈P be a CLTS, and let

𝑤 ∈ Σ∗
async

be a trace of {{𝑇p}}p∈P . Let (®𝑠, 𝜉) be the {{𝑇p}}p∈P configuration reached on 𝑤 . Then, 𝑤 is

channel-compliant, and for every pair of participants p ≠ q ∈ P,V(𝑤⇓p⊲q!-) = V(𝑤⇓q⊳p?-) · 𝜉 (p, q).

The proof of the same proposition for communicating state machines can be generalized directly

to CLTSs, and thus we refer the reader to [60, Lemma 19].



Characterizing Implementability of Global Protocols with Infinite States and Data 131:35

Lemma 4.13 (Receive events do not shrink intersection sets). Let S be a protocol satisfying

CC, and let {{𝑇p}}p∈P be a canonical implementation for S. Let𝑤𝑥 be a trace of {{𝑇p}}p∈P such that

𝑥 ∈ Σ?. Then, 𝐼 (𝑤) = 𝐼 (𝑤𝑥).

Proof. Let 𝑥 = p ⊳ q?𝑚. Because𝑤𝑥 is a trace of {{𝑇p}}p∈P , there exists a run (®𝑠0, 𝜉0)
𝑤−→∗ (®𝑠, 𝜉) 𝑥−→

(®𝑠 ′, 𝜉 ′) such that𝑚 is at the head of 𝜉 (q, p).
We assume that 𝐼 (𝑤) is non-empty; if 𝐼 (𝑤) is empty then 𝐼 (𝑤𝑥) is trivially empty. To show 𝐼 (𝑤) =

𝐼 (𝑤𝑥), let 𝜌 ∈ 𝐼 (𝑤) and we show that 𝜌 ∈ 𝐼 (𝑤𝑥). Recall that 𝐼 (𝑤𝑥) is defined as

⋂
r∈P R

S
r (𝑤𝑥).

Because R
S
r (𝑤𝑥) = R

S
r (𝑤) for every r ∈ P with r ≠ p, it suffices to show that 𝜌 ∈ R

S
p (𝑤𝑥) to show

𝜌 ∈ 𝐼 (𝑤𝑥).
We proceed via proof by contradiction so let 𝜌 ∉ R

S
p (𝑤𝑥) for 𝜌 ∈ 𝐼 (𝑤).

Let 𝛼 · 𝑠pre
𝑙−→ 𝑠post · 𝛽 be the unique splitting of 𝜌 for p matching 𝑤 . By definition of unique

splittings, p is the active participant in 𝑙 . Because 𝜌 ∉ R
S
p (𝑤𝑥), it follows that 𝑙 ≠ q→ p :𝑚. By

Lemma 4.7, p is the receiver in 𝑙 , and 𝑙 is of the form r→p :𝑚′, where r ≠ q or𝑚′ ≠𝑚.

Before performing case analysis, we first establish a claim that is used in both cases. Let 𝜌p
denote the largest prefix of 𝜌 that is consistent with 𝑤 for p. Formally, 𝜌p = max{𝜌 | 𝜌 ≤
𝜌 ∧

(
split(trace(𝜌))

)
⇓Σp ≤ 𝑤⇓Σp }. Let 𝜌q be defined analogously. It is clear that 𝜌p = 𝛼 · 𝑠𝑝𝑟𝑒 .

Claim I. 𝜌q > 𝜌p.

From Proposition A.1,V(𝑤⇓q⊲p!-
) = V(𝑤⇓p⊳q?-

) · 𝜉 (q, p). Because 𝜌p = 𝛼 · 𝑠𝑝𝑟𝑒 , it follows that
V(𝑤⇓p⊳q?-

) = V(split(trace(𝛼 · 𝑠𝑝𝑟𝑒 ))⇓p⊳q?-
). Because𝑚 is at the head of 𝜉 (q, p) by assumption,

there exists 𝑢 ∈ V∗ such that V(𝑤⇓q⊲p!-
) = V(split(trace(𝛼 · 𝑠𝑝𝑟𝑒 )))⇓p⊳q?-

· 𝑚 · 𝑢. Thus,
V(𝑤⇓q⊲p!-

) > V(split(trace(𝛼 · 𝑠𝑝𝑟𝑒 )))⇓p⊳q?-
and 𝜌q > 𝜌p follows. End Proof of Claim I.

Case: r = q and𝑚′ ≠𝑚.

We discharge this case by showing a contradiction to the assumption that𝑚 is at the head of

𝜉 (q, p). Because 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌p and 𝜌p < 𝜌q from Claim I, it must be the case that 𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 ≤ 𝜌q

and q ⊲ p!𝑚′ is in 𝑤⇓Σq . From Proposition A.1, it follows thatV(𝑤⇓q⊲p!-
) = V(𝑤⇓p⊳q?-

) ·𝑚′ · 𝑢′
and 𝜉 (q, p) =𝑚′ · 𝑢′, i.e.𝑚′ is at the head of 𝜉 (q, p). We find a contradiction to the assumption that

𝑚′ ≠𝑚.

Case: r ≠ q.
We discharge this case by showing a contradiction to RC. First, we establish the existence of a

transition 𝑠1

q→p:𝑚−−−−−→ 𝑠2 ∈ 𝑇 such that 𝑠1 ≠ 𝑠𝑝𝑟𝑒 and 𝑠1 is reachable by p on split−1 (𝑤⇓Σp ). By the

assumption that𝑤𝑥 is a trace of {{𝑇p}}p∈P , it follows that𝑤𝑥⇓Σp is a prefix ofL(𝑇p). By the canonicity
of {{𝑇p}}p∈P , it holds that pref (L(𝑇p)) ⊆ pref (L(S)⇓Σp ), and thus𝑤𝑥⇓Σp ∈ pref (L(S)⇓Σp ). Thus,
there exists a maximal run 𝜌 ′ in S such that𝑤𝑥⇓Σp ≤ split(trace(𝜌 ′))⇓Σp and 𝑠1

q→p:𝑚−−−−−→ 𝑠2 ∈ 𝜌 ′.
Because S is sender-driven, there does not exist a state 𝑠 ∈ 𝑆 with two outgoing transition labels

with different senders. Therefore, 𝑠1 ≠ 𝑠𝑝𝑟𝑒 .

By the fact that 𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽 is the unique splitting of 𝜌 for p matching𝑤 , it holds that 𝑠𝑝𝑟𝑒

is also reachable by p on split−1 (𝑤⇓Σp ).
We instantiate RC with 𝑠1

q→p:𝑚−−−−−→ 𝑠2, 𝑠𝑝𝑟𝑒
r→p:𝑚−−−−−→ 𝑠𝑝𝑜𝑠𝑡 and split−1 (𝑤⇓Σp ) to obtain:

¬(∃𝑣 ∈ pref (L𝑠𝑝𝑜𝑠𝑡 ). 𝑣⇓Σp = 𝜀 ∧V(𝑣⇓q⊲p!_
) = V(𝑣⇓p⊳q?_

) ·𝑚) .

We show, on the contrary, that

∃𝑣 ∈ pref (L𝑠𝑝𝑜𝑠𝑡 ). 𝑣⇓Σp = 𝜀 ∧V(𝑣⇓q⊲p!_
) = V(𝑣⇓p⊳q?_

) ·𝑚 .



131:36 E. Li, F. Stutz, T. Wies, D. Zufferey

It is clear that 𝑠𝑝𝑜𝑠𝑡 · 𝛽 is a maximal run in S𝑠𝑝𝑜𝑠𝑡 . By Lemma 4.15, to show that a witness 𝑣 ∈
pref (L𝑠𝑝𝑜𝑠𝑡 ), it suffices to show that 𝑣 is channel-compliant and furthermore, that for all participants

s ∈ P, 𝑣⇓Σs ≤ split(trace(𝑠𝑝𝑜𝑠𝑡 · 𝛽))⇓Σs .
Recall that 𝑤 is a trace of {{𝑇p}}p∈P and is thus channel-compliant. Intuitively, we obtain a

witness for 𝑣 by deleting from𝑤 symbols that belong to split(trace(𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 )). Formally,

let 𝑣 be initialized to 𝑤 and let 𝑙1 . . . 𝑙𝑛 = trace(𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 ). For each 𝑖 ∈ {1, . . . , 𝑛}, let

𝑙𝑖 ≔ p𝑖→q𝑖 :𝑚𝑖 . We check whether p𝑖 ⊲ q𝑖 !𝑚𝑖 ≤ 𝑤⇓Σp𝑖 , and if so, we delete the symbol p𝑖 ⊲ q𝑖 !𝑚𝑖

from𝑤 . We then check whether q𝑖 ⊳ p𝑖?𝑚𝑖 ≤ 𝑤⇓Σq𝑖 , and again delete the symbol if so. Note that

due to the channel-compliancy of 𝑣 , either both symbols are deleted, or only the send action is

deleted. We argue that the inductive invariant of channel-compliancy is satisfied: if a matching

pair of send and receive actions are found in 𝑣 and deleted, each ofV(𝑣⇓q𝑖⊳p𝑖?_) andV(𝑣⇓p𝑖⊲q𝑖 !_)
lose their head message, andV(𝑣⇓q𝑖⊳p𝑖?_) ≤ V(𝑣⇓p𝑖⊲q𝑖 !_) continues to hold; if only the send action

is found and deleted, then it must be the case thatV(𝑣⇓q𝑖⊳p𝑖?_) = 𝜀 and the invariant is trivially

re-established. Thus, we establish that upon termination, 𝑣 is channel-compliant. Furthermore, it

holds that 𝑠𝑝𝑜𝑠𝑡 · 𝛽 ∈ 𝐼 S𝑠𝑝𝑜𝑠𝑡 (𝑣).
Recall thatV(𝑤⇓q⊲p!_

) = V(𝑤⇓p⊳q?_
) ·𝑚. It remains to show thatV(𝑣⇓q⊲p!_

) = V(𝑣⇓p⊳q?_
) ·𝑚.

This holds from the fact that 𝛼 · 𝑠𝑝𝑟𝑒 = 𝜌p < 𝜌q, which means that any labels of the form q→p : - in

𝑙1 . . . 𝑙𝑛 must find and delete a matching pair of send and receive actions in 𝑣 , thus preserving the

above equality.

□

Lemma 4.14 (Send events preserve run prefixes). Let S be a protocol satisfying CC and

{{𝑇p}}p∈P be a canonical implementation for S. Let 𝑤𝑥 be a trace of {{𝑇p}}p∈P such that 𝑥 ∈ Σp,! for

some p ∈ P. Let 𝜌 be a run in 𝐼 (𝑤), and 𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽 be the unique splitting of 𝜌 for p with

respect to𝑤 . Then, there exists a run 𝜌 ′ in 𝐼 (𝑤𝑥) such that 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌 ′.

Proof. Let 𝑥 = p ⊲ q!𝑚. We prove the claim by induction on the length of𝑤 .

Base Case. 𝑤 = 𝜀. By definition, 𝐼 (𝜀) contains all maximal runs in S. Then, split(trace(𝛼 ·
𝑠𝑝𝑟𝑒 ))⇓Σp = 𝜀 and it holds that 𝑠0

𝜀
=⇒
p

∗ 𝑠𝑝𝑟𝑒 . We argue that there exists 𝑠1 ∈ 𝑆 such that 𝑠0

𝜀
=⇒
p

∗ 𝑠1. From

the canonicity of {{𝑇p}}p∈P and the fact that 𝑥 ∈ pref (L(𝑇p)), it follows that 𝑥 ∈ pref (L(S)⇓Σp ).
Thus, there exists𝑤 ∈ L(S) such that 𝑥 ≤ 𝑤⇓Σp , and consequently there exists a run 𝜌 ′ such that

𝑥 ≤ split(trace(𝜌 ′))⇓Σp . The unique splitting of 𝜌 ′ for p with respect to 𝜀 gives us a candidate

for 𝑠1. By Definition 4.1, there exists a 𝑠2 such that 𝑠1

𝑙
=⇒
p

∗ 𝑠2. By the assumption that every run in S
extends to a maximal run, there exists a maximal run in 𝐼 (𝑥).

Induction Step. Let𝑤𝑥 be an extension of𝑤 by 𝑥 ∈ Σp,!. To re-establish the induction hypothesis,

we need to show the existence of a run 𝜌 in 𝐼 (𝑤𝑥) such that 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌 . Since p is the active

participant in 𝑥 , it holds for any r ≠ p that R
S
r (𝑤) = R

S
r (𝑤𝑥). Therefore, to prove the existential

claim, it suffices to construct a run 𝜌 that satisfies:

(1) 𝜌 ∈ R
S
p (𝑤𝑥),

(2) 𝜌 ∈ 𝐼 (𝑤), and
(3) 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌 .

In the case that 𝑙⇓Σp = 𝑥 , we are done: Property 3 and 2 hold by construction, and Property 1

holds by the definition of possible run sets.



Characterizing Implementability of Global Protocols with Infinite States and Data 131:37

In the case that 𝑙⇓Σp ≠ 𝑥 , we show the existence of a different continuation such that the resulting

run satisfies all three conditions.

First, we establish that p is the sender in 𝑙 . By definition of unique splitting, we know that p
is active in 𝑙 . Assume towards a contradiction that p is the receiver in 𝑙 . Then, 𝑙 is of the form

q→p :𝑚. Because 𝛼 · 𝑠𝑝𝑟𝑒
q→p:𝑚−−−−−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽 is a maximal run in S, we have that (𝑤 · p ⊳ q?𝑚)⇓Σp ∈

pref (L(S)⇓Σp ). By the canonicity of {{𝑇p}}p∈P , it holds that pref (L(S)⇓Σp ) ⊆ pref (L(𝑇p)), and
therefore (𝑤 · p ⊳ q?𝑚)⇓Σp ∈ pref (L(𝑇p)). By assumption that 𝑤𝑥 is a trace of {{𝑇p}}p∈P , it holds
that (𝑤𝑥)⇓Σp ∈ pref (L(𝑇p)). From the fact that p ⊳ q?𝑚 ∈ Σp,? and 𝑥 ∈ Σp,!, we find a contradiction

to Lemma 4.7. Therefore, 𝑙 must be of the form p→q′ :𝑚′, with q′ ≠ q or𝑚′ ≠𝑚.

By assumption that𝑤𝑥 is a trace of {{𝑇p}}p∈P , it holds that𝑤𝑥⇓Σp ∈ pref (L(𝑇p)). By the canonicity
of {{𝑇p}}p∈P (Definition 4.6(ii)), we have pref (L(𝑇p)) ⊆ pref ((L(S)⇓Σp )) and hence, 𝑤𝑥⇓Σp ∈
pref (L(S)⇓Σp ). Thus, there exists 𝑣 ∈ L(S) such that 𝑤𝑥⇓Σp ≤ 𝑣⇓Σp , and consequently there

exists a run 𝜌 ′ such that 𝑤𝑥⇓Σp ≤ split(trace(𝜌 ′))⇓Σp . The unique splitting of 𝜌 ′ for p with

respect to𝑤 gives us a transition 𝑠1

p→q:𝑚−−−−−→ 𝑠2 ∈ 𝑇 .
If 𝑠1 = 𝑠𝑝𝑟𝑒 , then 𝛼 · 𝑠𝑝𝑟𝑒

p→q:𝑚−−−−−→ 𝑠2 is a run in S. Otherwise, we instantiate SC (Definition 4.1)

with 𝑠1

p→q:𝑚−−−−−→ 𝑠2, 𝑠𝑝𝑟𝑒 and the witness 𝑤⇓Σp . Then, there exists 𝑠′ such that 𝑠𝑝𝑟𝑒
p→q:𝑚
======⇒

p

∗ 𝑠′. We

argue that, in fact, 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ ∈ 𝑇 . This follows from the fact established above that p is the

sender in 𝑙 , and that 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 ∈ 𝑇 . By the assumption that S is sender driven, there does not

exist a state with outgoing transitions that do not share a sender. Therefore, 𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ is a

run in S.
Either way, we have found a run that thus far satisfies Property 1 and 3 regardless of its choice

of maximal suffix. Let 𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ be a run in S. Then, for all choices of

¯𝛽 such that

𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ · ¯𝛽 is a maximal run, both 𝑤𝑥⇓Σp ≤ split(trace(𝛼 · 𝑠𝑝𝑟𝑒

p→q:𝑚−−−−−→ 𝑠′)) and
𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝛼 · 𝑠𝑝𝑟𝑒

p→q:𝑚−−−−−→ 𝑠′ · ¯𝛽 hold.

Property 2, however, requires that the projection of𝑤 onto each participant is consistent with 𝜌 ,

and this cannot be ensured by the prefix alone.

We construct the remainder of 𝜌 by picking an arbitrary maximal suffix to form a candidate run,

and iteratively performing suffix replacements on the candidate run until it lands in 𝐼 (𝑤). Let ¯𝛽 be

a run suffix such that 𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ · ¯𝛽 is a maximal run in S. Let 𝜌𝑐 denote this candidate run.

If 𝜌𝑐 ∈ 𝐼 (𝑤), we are done. Otherwise, 𝜌𝑐 ∉ 𝐼 (𝑤) and there exists a non-empty set of processes

Q ⊆ P such that for each r ∈ Q,

𝑤⇓Σr ≰ split(trace(𝜌𝑐 ))⇓Σr . (1)

By the fact that 𝜌 ∈ 𝐼 (𝑤),

𝑤⇓Σr ≤ split(trace(𝜌))⇓Σr . (2)

We can rewrite (1) and (2) above to make explicit their shared prefix 𝛼 · 𝑠𝑝𝑟𝑒 :

𝑤⇓Σr ≰ split(trace(𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ · ¯𝛽))⇓Σr (3)

𝑤⇓Σr ≤ split(trace(𝛼 · 𝑠𝑝𝑟𝑒
p→q′ :𝑚′−−−−−−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽))⇓Σr . (4)



131:38 E. Li, F. Stutz, T. Wies, D. Zufferey

We can further rewrite (3) and (4) to make explicit their point of disagreement:

𝑤⇓Σr ≰ (split(trace(𝛼 · 𝑠𝑝𝑟𝑒 )) . p ⊲ q!𝑚. q ⊳ p?𝑚. split(trace( ¯𝛽)))⇓Σr (5)

𝑤⇓Σr ≤ (split(trace(𝛼 · 𝑠𝑝𝑟𝑒 )) . p ⊲ q
′
!𝑚′ . q′ ⊳ p?𝑚′ . split(trace(𝛽)))⇓Σr (6)

It is clear that in order for both 5 and 6 to hold, it must be the case that split(trace(𝛼 ·𝑠𝑝𝑟𝑒 ))⇓Σr <
𝑤⇓Σr .

We formalize the point of disagreement between𝑤⇓Σr and 𝜌𝑐 using an index 𝑖r representing the

position of the first disagreeing symbol in trace(𝜌𝑐 ):

𝑖r ≔ max{𝑖 | split(trace(𝜌𝑐 ) [0..𝑖 − 1])⇓Σr ≤ 𝑤⇓Σr } .

By the maximality of 𝑖r, it holds that r is the active participant in trace(𝜌𝑐 ) [𝑖r]. By the fact that

split(trace(𝛼 · 𝑠𝑝𝑟𝑒 ))⇓Σr < 𝑤⇓Σr we know that

𝑖r > |trace(𝛼 · 𝑠𝑝𝑟𝑒 ) | .

We identify the participant in Q with the earliest disagreement in split(trace(𝜌𝑐 )): let r̄ be the

participant in Q with the smallest 𝑖r̄. If two participants that share the same smallest index, then

by the fact that both participants are active in trace(𝜌𝑐 ) [𝑖r̄], it must be the case that one is the

sender and one is the receiver: we pick the sender to be r̄. Let 𝑦r̄ denote split(trace(𝜌𝑐 [𝑖r̄]))⇓Σr̄ .

Claim I. 𝑦r̄ is a send event.

Assume by contradiction that 𝑦r̄ is a receive event. We identify the symbol in𝑤 that disagrees

with 𝑦r̄: let 𝑤
′
be the largest prefix of 𝑤 such that 𝑤 ′⇓Σr̄ ≤ split(trace(𝜌𝑐 ))⇓Σr̄ . By definition,

𝑤 ′⇓Σr̄ = split(trace(𝜌𝑐 ) [0..𝑖r̄−1])⇓Σr̄ . Let 𝑧 be the next symbol following𝑤 ′ in𝑤 ; then𝑤 ′𝑧 ≤ 𝑤

and 𝑧 ∈ Σr̄ with 𝑧 ≠ 𝑦r̄. Furthermore, by No Mixed Choice (4.7) we have that 𝑧 ∈ Σr̄,?.

By assumption, 𝑤 ′𝑧 ≰ split(trace(𝜌𝑐 ) [0..𝑖r̄]). Therefore, any run with a trace that begins

with 𝜌𝑐 [0..𝑖r̄] cannot be contained in R
S
r̄ (𝑤 ′𝑧), or consequently in 𝐼 (𝑤 ′𝑧). We show however, that

𝐼 (𝑤 ′𝑧) must contain some runs that begin with 𝜌𝑐 [0..𝑖r̄]. From Lemma 4.13 for traces𝑤 ′ and𝑤 ′𝑧,
we obtain that 𝐼 (𝑤 ′) = 𝐼 (𝑤 ′𝑧). Therefore, it suffices to show that 𝐼 (𝑤 ′) contains runs that begin
with 𝜌𝑐 [0..𝑖r̄].

Claim II. ∀𝑤 ′′ ≤ 𝑤 ′ . 𝐼 (𝑤 ′′) contains runs that begin with 𝜌𝑐 [0..𝑖r̄].
We prove the claim via induction on𝑤 ′.
The base case is trivial from the fact that 𝐼 (𝜀) contains all maximal runs.

For the inductive step, let𝑤 ′′𝑦 ≤ 𝑤 ′.
In the case that 𝑦 ∈ Σ?, we know 𝐼 (𝑤 ′′𝑦) = 𝐼 (𝑤 ′′) from Lemma 4.13 and the witness from 𝐼 (𝑤 ′′)

can be reused.

In the case that 𝑦 ∈ Σ!, let s be the active participant of 𝑦 and let 𝜌 ′ be a run in 𝐼 (𝑤 ′′) beginning
with 𝜌𝑐 [0..𝑖r̄] given by the inner induction hypothesis. Let 𝛼 ′ · 𝑠3

𝑙 ′−→ 𝑠4 · 𝛽 ′ be the unique splitting
of 𝜌 ′ for s with respect to𝑤 ′′. If split(𝑙 ′)⇓Σs = 𝑦, then 𝜌 ′ can be used as the witness. Otherwise,

split(𝑙 ′)⇓Σs ≠ 𝑦, and 𝜌 ′ ∉ R
S
s (𝑤 ′′𝑦).

The outer induction hypothesis holds for all prefixes of 𝑤 : we instantiate it with 𝑤 ′′ and 𝑦 to

obtain:

∃ 𝜌 ′′ ∈ 𝐼 (𝑤 ′′𝑦). 𝛼 ′ · 𝑠3 ≤ 𝜌 ′′ .

Let 𝑖s be defined as before; it follows that 𝜌 ′ [𝑖s] = 𝑠3. It must be the case that 𝑖s > 𝑖r̄: if 𝑖s ≤ 𝑖r̄,

because 𝜌𝑐 and 𝜌 ′ share a prefix 𝜌𝑐 [0..𝑖r̄] and 𝑤 ′′𝑦 ≤ 𝑤 , s would be the earliest disagreeing

participant instead of r̄.



Characterizing Implementability of Global Protocols with Infinite States and Data 131:39

Because 𝑖s > 𝑖r̄, 𝜌𝑐 [0..𝑖r̄] = 𝜌 ′ [0..𝑖r̄] ≤ 𝜌 ′ [0..𝑖s]. Because 𝜌 ′ [0..𝑖s] = 𝛼 ′ · 𝑠3 ≤ 𝜌 ′′, it follows from
prefix transitivity that 𝜌𝑐 [0..𝑖r̄] ≤ 𝜌 ′′, thus re-establishing the induction hypothesis for𝑤 ′′𝑦 with

𝜌 ′′ as a witness run that begins with 𝜌𝑐 [0..𝑖r̄].
This concludes our proof that 𝐼 (𝑤 ′) contains runs that begin with 𝜌𝑐 [0..𝑖r̄], and in turn our proof

by contradiction that 𝑦r̄ must be a send event.

Having established that 𝑙𝑖r̄ is a send event for r̄, we can now reason from the canonicity of

{{𝑇p}}p∈P and SC and conclude that there exists an outgoing transition from 𝜌𝑐 [𝑖r̄] and a maximal

suffix such that the resulting run no longer disagrees with𝑤⇓Σr̄ . The reasoning is identical to that

which is used to construct our candidate run 𝜌𝑐 , and is thus omitted. We update our candidate run

𝜌𝑐 with the correct transition label and maximal suffix, update the set of states Q ∈ P to the new

set of participants that disagree with the new candidate run, and repeat the construction above on

the new candidate run until Q is empty.

Termination is guaranteed in at most |𝑤 | steps by the fact that the number of symbols in𝑤 that

agree with the candidate run up to 𝑖r̄ must increase.

Upon termination, the resulting 𝜌𝑐 serves as our witness for 𝜌 and 𝜌 thus satisfies the final

remaining property 3: 𝜌 ∈ 𝐼 (𝑤). This concludes our proof by induction of the prefix-preservation

of send transitions. □

Lemma 4.18 (Completeness). Let S be a protocol. If S is implementable, then S satisfies CC.

Proof. Let communicating LTS {{𝐵p}}p∈P implement S. Specifically, we contradict protocol

fidelity, and show that L(S) ≠ L({{𝐵p}}p∈P) by constructing a witness 𝑣0 satisfying:

(a) 𝑣0 is a trace of {{𝐵p}}p∈P , and
(b) 𝐼 (𝑣0) = ∅.
The reasoning for the sufficiency of the above two conditions is as follows. To prove the inequality

of the two languages, it suffices to prove the inequality of their respective prefix sets, i.e.

pref (L(S)) ≠ pref (L({{𝐵p}}p∈P)) .

Specifically, we show the existence of a 𝑣 ∈ Σ∗
async

such that

𝑣 ∈ {𝑢 | 𝑢 ≤ 𝑤 ∧𝑤 ∈ L({{𝐵p}}p∈P)} ∧
𝑣 ∉ {𝑢 | 𝑢 ≤ 𝑤 ∧𝑤 ∈ L(S)} .

Because {{𝐵p}}p∈P is deadlock-free by assumption, every trace can be extended to a maximal trace.

Therefore, every trace 𝑣 ∈ Σ∗
async

of {{𝐵p}}p∈P is a member of the prefix set of {{𝐵p}}p∈P , i.e.

∃ (®𝑠, 𝜉). (®𝑠0, 𝜉0)
𝑣−→∗ (®𝑠, 𝜉) =⇒ 𝑣 ∈ {𝑢 | 𝑢 ≤ 𝑤 ∧𝑤 ∈ L({{𝐵p}}p∈P)} .

For any 𝑤 ∈ L(S), it holds that 𝐼 (𝑤) ≠ ∅. Because 𝐼 (-) is monotonically decreasing, if 𝐼 (𝑤) is
non-empty then for any 𝑣 ≤ 𝑤 , 𝐼 (𝑣) is non-empty. By the following, to show that a word 𝑣 is not a

member of the prefix set of L(S) it suffices to show that 𝐼 (𝑣) is empty:

∀𝑣 ∈ Σ∗ . 𝐼 (𝑣) = ∅ =⇒ ∀𝑤. 𝑣 ≤ 𝑤 =⇒ 𝑤 ∉ L(S) .

Send Coherence. Assume that SC does not hold for some transition 𝑠1

p→q:𝑚−−−−−→ 𝑠2 ∈ 𝑇 . The

negation of SC says that there exists a simultaneously reachable state with no post-state reachable

on p→q :𝑚. Formally, let 𝑠 ∈ 𝑆 be a state with 𝑠 ≠ 𝑠1 and 𝑢 ∈ Σ∗p be a word such that 𝑠0

𝑢
=⇒
p

∗ 𝑠1, 𝑠 .

Then, there does not exist 𝑠′ ∈ 𝑆 such that 𝑠
p→q:𝑚
======⇒

p

∗ 𝑠′.

Because 𝑠0

𝑢
=⇒
p

∗ 𝑠 , there exists a run 𝛼 · 𝑠 such that split(trace(𝛼 · 𝑠))⇓Σp = 𝑢.



131:40 E. Li, F. Stutz, T. Wies, D. Zufferey

Let 𝑤̄ be split(trace(𝛼 · 𝑠)). Let 𝑤̄ · p ⊲ q!𝑚 be our witness 𝑣0; we show that 𝑣0 satisfies (a) and

(b).

Because {{𝐵p}}p∈P implements S, 𝑤̄ is a trace of {{𝐵p}}p∈P and there exists a configuration (®𝑡, 𝜉)
of {{𝐵p}}p∈P such that (®𝑡0, 𝜉0)

𝑤̄−→∗ (®𝑡, 𝜉). Because 𝑠0

𝑢
=⇒
p

∗ 𝑠1, there again exists a run 𝛼1 · 𝑠1 such

that split(trace(𝛼1 · 𝑠1))⇓Σp = 𝑢. Thus, split(trace(𝛼1 · 𝑠1

p→q:𝑚−−−−−→ 𝑠2)) is a prefix of L(S) and
consequently, split(trace(𝛼1 · 𝑠1

p→q:𝑚−−−−−→ 𝑠2))⇓Σp is a prefix of L(𝐵p). In other words, 𝑢 · p ⊲ q!𝑚

is a prefix of L(𝐵p). Because 𝐵p is deterministic, there exists an outgoing transition from ®𝑠p labeled
with p ⊲ q!𝑚. Because send transitions are always enabled in a communicating LTS, 𝑤̄ · p ⊲ q!𝑚 is a

trace of {{𝐵p}}p∈P . Thus, (a) is established for 𝑣0.

It remains to show that 𝑣0 satisfies (b), namely 𝐼 (𝑤̄ · p ⊲ q!𝑚) = ∅.
Claim. All runs in 𝐼 (𝑤̄) begin with 𝛼 · 𝑠 .
Proof of Claim. This claim follows from the fact thatS is deterministic and sender-driven. Assume

by contradiction that 𝜌 ′ ∈ 𝐼 (𝑤̄) and 𝜌 ′ does not begin with 𝛼 · 𝑠 . Because 𝛼 · 𝑠 ≠ 𝜌 ′, and S is

deterministic, trace(𝛼 · 𝑠) ≠ trace(𝜌 ′). Let 𝑙 = trace(𝛼 · 𝑠) and let 𝑙 ′ = trace(𝜌 ′). Moreover, let

¯𝑙 be the largest common prefix of 𝑙 and 𝑙 ′. From the assumption that S is sender-driven, the first

divergence between the traces of any two runs must correspond to a send action by some participant.

Let p′ be the sender in the first divergence between 𝑙 and 𝑙 ′. Because 𝜌 ′ ∈ R
S
p′ (𝑤̄), it holds that

𝑤̄⇓Σp′ ≤ split(trace(𝜌 ′))⇓Σp′ . We can rewrite the inequality as split(𝑙)⇓Σp′ ≤ split(𝑙 ′)⇓Σp′ .
Because

¯𝑙 is the largest common prefix shared by 𝑙 and 𝑙 ′, split(𝑙)⇓Σp′ and split(𝑙 ′)⇓Σp′ are
respectively of the form

¯𝑙⇓Σp′ · p
′ ⊲ q𝑖 !𝑚

′
𝑖 · 𝑧′ and ¯𝑙⇓Σp′ · p

′ ⊲ q𝑗 !𝑚
′
𝑗 · 𝑦′, with q𝑖 ≠ q𝑗 or𝑚

′
𝑖 ≠ 𝑚′𝑗 .

From this and
¯𝑙⇓Σp′ · p

′ ⊲ q𝑖 !𝑚
′
𝑖 · 𝑧′ ≤ ¯𝑙⇓Σp′ · p

′ ⊲ q𝑗 !𝑚
′
𝑗 · 𝑦′, we arrive at a contradiction.

End Proof of Claim.

Because 𝐼 (-) is monotonically decreasing, 𝐼 (𝑣0) ⊆ 𝐼 (𝑤̄). With Claim, every run in 𝐼 (𝑣0) begins
with 𝛼 · 𝑠 . From the negation of SC, there does not exist 𝑠′ ∈ 𝑆 such that 𝑠

p→q:𝑚
======⇒

p

∗ 𝑠′, and thus

there does not exist a maximal run 𝜌 ∈ S such that 𝑣0⇓Σp ≤ split(trace(𝜌))⇓Σp .
Therefore, R

S
p (𝑤̄ · p ⊲ q!𝑚) = ∅, and 𝐼 (𝑤̄ · p ⊲ q!𝑚) = ∅ follows.

This concludes our proof by contradiction for the necessity of SC.

Receive Coherence. Assume that RC does not hold for a pair of transitions 𝑠1

p→q:𝑚−−−−−→ 𝑠2, 𝑠
r→q:𝑚−−−−−→

𝑠′ ∈ 𝑇 . Then, 𝑠 ≠ 𝑠1, r ≠ p and let 𝑢 ∈ Σ∗q be a word such that 𝑠0

𝑢
=⇒
q

∗ 𝑠1, 𝑠 . Furthermore there exists

𝑤 ∈ pref (L(S𝑠′ )) with𝑤⇓Σq = 𝜀 ∧V(𝑤⇓p⊲q!_
) = V(𝑤⇓q⊳p?_

) ·𝑚.

Because 𝑠0

𝑢
=⇒
q

∗ 𝑠1, 𝑠 and 𝑠
r→q:𝑚−−−−−→ 𝑠′, there exists a run 𝛼 · 𝑠 r→q:𝑚−−−−−→ 𝑠′ such that split(trace(𝛼 ·

𝑠))⇓Σq = 𝑢.

Let split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤 · q ⊳ p?𝑚 be our witness 𝑣0; we show that 𝑣0 satisfies (a) and

(b).

First, we show that 𝑣0 is a trace of {{𝐵p}}p∈P . We reason about each extension of 𝑣0 in turn,

starting with split(trace(𝛼 · 𝑠)). It is clear that split(trace(𝛼 · 𝑠)) is a trace of {{𝐵p}}p∈P : this
follows immediately from the assumption that {{𝐵p}}p∈P implements S. Let (®𝑠, 𝜉) be the {{𝐵p}}p∈P
configuration reached on split(trace(𝛼 · 𝑠)):

( ®𝑠0, 𝜉0)
split(trace(𝛼 ·𝑠 ) )
−−−−−−−−−−−−−−→∗ (®𝑠, 𝜉)

Next, we reason about the extension r ⊲ q!𝑚 · 𝑤 together. We first establish that r ⊲ q!𝑚 · 𝑤 ∈
pref (L(S𝑠 )). Because𝑤 ∈ pref (L(S𝑠′ )), there exists a maximal run 𝑠′ · 𝛽 such that 𝑠′ · 𝛽 ∈ 𝐼 (𝑤).



Characterizing Implementability of Global Protocols with Infinite States and Data 131:41

Observe that 𝑠
r→q:𝑚−−−−−→ 𝑠′ · 𝛽 ∈ 𝐼 (r ⊲ q!𝑚 ·𝑤) and that r ⊲ q!𝑚 ·𝑤 remains channel-compliant due

to the assumption that 𝑤⇓Σq = 𝜀. Thus, by Lemma 4.15 it holds that r ⊲ q!𝑚 · 𝑤 ∈ pref (L(S𝑠 )).
Therefore, split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤 ∈ pref (L(S)), and by the assumption that {{𝐵p}}p∈P
implements S, split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤 is a trace of {{𝐵p}}p∈P :

( ®𝑠0, 𝜉0)
split(trace(𝛼 ·𝑠 ) )
−−−−−−−−−−−−−−→∗ (®𝑠, 𝜉) r⊲q!𝑚 ·𝑤−−−−−−→ (®𝑠 ′, 𝜉 ′)

Finally, we reason about the extension q ⊳ p?𝑚. We show that there exists a {{𝐵p}}p∈P configuration

(®𝑠 ′′, 𝜉 ′′) such that (®𝑠 ′, 𝜉 ′) q⊳p?𝑚−−−−−→ (®𝑠 ′′, 𝜉 ′). To do so, we need to show that

(1) there exists an outgoing transition labeled with q ⊳ p?𝑚 from ®𝑠 ′q, and
(2) 𝜉 ′ (p, q) =𝑚 · 𝑢′, with 𝑢′ ∈ V∗.
We know that 𝑠0

𝑢
=⇒
q

∗ 𝑠1 and 𝑠1

p→q:𝑚−−−−−→ 𝑠2, so there exists a run 𝛼1 · 𝑠2 such that split(trace(𝛼1 ·
𝑠2))⇓Σq = 𝑢 ·q⊳p?𝑚. Because split(trace(𝛼1 ·𝑠2))⇓Σq ∈ pref (L(S))⇓Σq and {{𝐵p}}p∈P implements

S, it follows that 𝑢 · q ⊳ p?𝑚 ∈ pref (L(𝐵q)). Let 𝑡 ∈ 𝑄q be the state reached on 𝑢 in 𝐵q. The state 𝑡

is unique since 𝐵q is deterministic. Because 𝑢 · q ⊳ p?𝑚 is a prefix in 𝐵q, there exists a transition

𝑡
q⊳p?𝑚−−−−−→ 𝑡1 ∈ 𝛿q. It holds that (split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤)⇓Σq = 𝑢, so it follows that ®𝑠′q = 𝑡

and there exists an outgoing transition from ®𝑠′q labeled with q ⊳ p?𝑚. This establishes (1).

(2) is established from the fact that send actions are immediately followed by their matching

receive action in split(trace(𝛼 · 𝑠)), and therefore all channels in 𝜉 are empty, including 𝜉 (p, q).
Because r ⊲ q!𝑚 does not concern 𝜉 (p, q),𝑚 remains the first unmatched send action from p to q in

split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤 , and thus𝑚 is at the head of channel 𝜉 ′ (p, q):

( ®𝑠0, 𝜉0)
split(trace(𝛼 ·𝑠 ) )
−−−−−−−−−−−−−−→∗ (®𝑠, 𝜉) r⊲q!𝑚 ·𝑤−−−−−−→ ( ®𝑠′, 𝜉 ′) q⊳p?𝑚−−−−−→ ( ®𝑠′′, 𝜉 ′′) .

This concludes our proof of (a).

Next, we argue that 𝐼 (𝑣0) = ∅. This claim follows trivially from the observation that every run

in 𝐼 (𝑣0) must begin with 𝛼 · 𝑠 r→q:𝑚−−−−−→ 𝑠′, and therefore 𝑣0 must satisfy 𝑣0⇓Σq ≤ 𝑢 · q ⊳ r?𝑚, yet

𝑣0⇓Σq = 𝑢 · q ⊳ p?𝑚 and we find a contradiction.

NoMixed Choice. Assume that NMC does not hold for a pair of transitions 𝑠1

p→q:𝑚−−−−−→ 𝑠2, 𝑠
r→p:𝑚−−−−−→

𝑠′ ∈ 𝑇 . The negation of NMC says that 𝑠1 and 𝑠 are simultaneously reachable. Let 𝑢 ∈ Σ∗q be a word
such that 𝑠0

𝑢
=⇒
q

∗ 𝑠1, 𝑠 .

Because 𝑠0

𝑢
=⇒
p

∗ 𝑠 , there exists a run 𝛼 · 𝑠 such that split(trace(𝛼 · 𝑠))⇓Σp = 𝑢.

Let 𝑤̄ be split(trace(𝛼 · 𝑠)). Let 𝑤̄ · r ⊲ p!𝑚 · p ⊲ q!𝑚 be our witness 𝑣0; we show that 𝑣0 satisfies

(a) and (b).

The reasoning is similar to that for the witness constructed for Send Coherence Condition, and

is thus omitted. □

B Additional Material for Section 5
Lemma 5.9. Implementability of global types is co-NP-complete.

Proof. The arguments for co-NP membership of implementability for global types are identical

to those for general finite protocols, and are thus omitted.

As in the proof of Theorem 5.8, we show NP-hardness of non-implementability via a reduction

from the 3-SAT problem. Assume a 3-SAT instance 𝜑 = 𝐶1 ∧ . . .∧𝐶𝑘 . Let 𝑥1, . . . , 𝑥𝑛 be the variables

occurring in 𝜑 and let 𝐿𝑖 𝑗 be the 𝑗 th literal of clause𝐶𝑖 , with 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 3. We construct

a global type G𝜑 over participants P = {p, q, r, x1, x1, . . . , xn, xn}, such that 𝜑 is satisfiable iff G𝜑 is



131:42 E. Li, F. Stutz, T. Wies, D. Zufferey

implementable. In particular, we ensure that G𝜑 is implementable iff availp,q,{q} (𝑚,𝐺 ′) does not
hold for some subterm 𝐺 ′ in G𝜑 .

The construction idea for G𝜑 is identical to that for S𝜑 from Theorem 5.8, but with several

modifications to yield a tree-shaped protocol which corresponds to a global type. First, for each

branching state from which r selects variables or clauses, represented as 𝜇𝑡 terms, we introduce a

new branch that acts as a forward edge connecting to the next branching state. Because branches

in a global type can only join at a single state via recursion variables, and recursion variables must

appear in scope of their 𝜇𝑡 terms, variable and clause selection proceeds by recursing “backwards”

towards the top-level global type. Due to this reversal of traversal order, the initial choice by r
and the message exchange p→ q : 𝑚 potentially violating Receive Coherence swap places in the

protocol. The construction of global type G𝜑 is detailed below:

(1) Define for every variable 𝑥𝑖 with 2 < 𝑖 < 𝑛 a global type𝐺𝑥𝑖 representing a truth assignment

to variable 𝑥𝑖 as follows:

𝐺𝑥𝑖 ≔ 𝜇𝑡𝑥𝑖 . +

r→ xi : ⊥. r→ xi : ⊤. r→ q : 𝑚𝑥𝑖 . q→ xi : 𝑚. 𝑡𝑥𝑖+1

r→ xi : ⊥. r→ xi : ⊤. r→ q : 𝑚𝑥𝑖 . q→ xi : 𝑚. 𝑡𝑥𝑖+1

r→ xi : 𝑛𝑒𝑥𝑡 . r→ xi : 𝑛𝑒𝑥𝑡 . r→ q : 𝑛𝑒𝑥𝑡 .𝐺𝑥𝑖−1

For 𝑥2 and 𝑥𝑛 , the construction is modified as follows. For𝐺𝑥𝑛 , the recursion variable in the

first and second branches is replaced with 𝑡𝐶1
. For 𝐺𝑥2

, the following is added before 𝐺𝑥1
in

the third branch:

r→ q : last. r→ p : last. r→ x1 : last. r→ x1 : last. q→ p : 𝑚. q→ x1 : 𝑚. q→ x1 : 𝑚.

(2) Define for every clause 𝐶𝑖 = 𝐿𝑖1 ∨ 𝐿𝑖2 ∨ 𝐿𝑖3 with 2 ≤ 𝑖 < 𝑘 a global type 𝐺𝐶𝑖
as follows,

where 𝑥𝑖 𝑗 is defined as x if 𝐿𝑖 𝑗 = 𝑥 and x if 𝐿𝑖 𝑗 = ¬𝑥 :

𝐺𝐶𝑖
≔ 𝜇𝑡𝐶𝑖

. +
{
Σ 𝑗=1..3 r→ 𝑥𝑖 𝑗 : 𝑚. r→ p : 𝑚𝑥𝑖 𝑗 . 𝑥𝑖 𝑗 → p : 𝑚. 𝑡𝐶𝑖+1

r→ 𝑥𝑖1 : next. r→ 𝑥𝑖2 : next. r→ 𝑥𝑖3 : next. r→ p : next. 𝐺𝐶𝑖−1

For 𝐶1 and 𝐶𝑘 , the construction is modified as follows. For 𝐺𝐶1
, the last branch continues

with 𝐺𝑥𝑛 . For 𝐺𝐶𝑘
, the recursion variable in the first three branches is replaced with 𝑡 .

(3) Define 𝐺𝑥1
for variable 𝑥1 as follows:

𝐺𝑥1
≔ +

{
r→ p : 𝑚1 . r→ q : 𝑚.𝐺

r→ p : 𝑚2 . p→ q : 𝑚. 0
𝐺 ≔ +

{
r→ x1 : ⊥. r→ x1 : ⊤. r→ q : 𝑚𝑥1

. q→ x1 : 𝑚. 𝑡𝑥2

r→ x1 : ⊥. r→ x1 : ⊤. r→ q : 𝑚𝑥1
. q→ x1 : 𝑚. 𝑡𝑥2

The global type G𝜑 is thus defined as:

G𝜑 ≔ 𝜇𝑡 . r→ q : top. p→ q : 𝑚.𝐺𝐶𝑘

Observe that G𝜑 is linear in the size of 𝜑 .

We first establish that availp,q,{q} (𝑚,𝐺) holds in G𝜑 iff 𝜑 is satisfiable. Observe that the 𝐺𝑥𝑖 ’s

contain two branches that recurse “backwards” to the previous𝐺𝑥𝑖+1 , and one branch that proceeds

“forwards” towards 𝐺𝑥1
. Each time a backward branch is taken, either xi or xi is added to the

blocked set B along the path. Forward branches do not change the blocked set, as participant q

does not send messages in them. Thus, the path computed by availp,q,{q} (𝑚,𝐺) from𝐺 to𝐺𝐶1
must

contain for each variable 𝑥𝑖 either xi or xi. The blocked set B thus encodes a truth assignment

𝜌B for the 𝑥𝑖 ’s where 𝜌B (𝑥𝑖 ) = ⊤ iff xi ∉ B. By construction of𝐺𝑥𝑖 , for every truth assignment 𝜌 ,

there exists at least one path between 𝐺 and 𝐺𝐶1
such that 𝜌 = 𝜌B for the blocked set B computed

along that path.

The𝐺𝐶𝑖
terms allow p to proceed backwards towards G𝜑 by selecting a branch whose participant

𝑥 is not in B, i.e.𝐶𝑖 is satisfied by 𝜌B . Thus, a path from𝐺𝐶1
to G𝜑 adds p to B at 𝑡𝑖 iff 𝜌B does not



Characterizing Implementability of Global Protocols with Infinite States and Data 131:43

satisfy at least one of the clauses 𝐶𝑖 . Therefore,𝑚 is available in 𝐺 iff there exists a B such that 𝜌B
satisfies 𝜑 .

The reasoning that G𝜑 is implementable iff availp,q,{q} (𝑚,𝐺) does not hold again follows that

for S𝜑 , and below we only discuss new behavior introduced by the structural changes to S𝜑 .
Participant r still dictates the control flow in the global type, but now additionally sends next

messages to inform participants in the branch when a forward edge is taken, last messages to

inform p, q, x1 and x1 when the last forward edge is taken, and top to q to inform q to receive𝑚

from q. Receiving next messages means inaction for all other participants. Receiving last prompts q
to send a message to p, x1 and x1, which they anticipate by receiving last first from r.
As before, the only potential source of non-implementability lies in participant q, who can

violate Receive Coherence for transitions labeled with r → q : 𝑚 and p → q : 𝑚 in 𝐺𝑥1
when

availp,q,{q} (𝑚,𝐺) does not hold, and the message from p can be received out of order.

We obtain that G𝜑 is non-implementable iff availp,q,{q} (𝑚,𝐺) holds in G𝜑 iff 𝜑 is satisfiable. □

Received 2024-10-16; accepted 2025-02-18


	Abstract
	1 Introduction
	2 Overview
	3 Preliminaries
	3.1 Global Communicating Labeled Transition Systems (GCLTS)
	3.2 Symbolic Protocols with Dependent Refinements

	4 Characterizing Protocol Implementability
	4.1 Soundness
	4.2 Completeness
	4.3 Synthesis

	5 Checking Implementability
	5.1 Symbolic Protocols
	5.2 Finite Protocols
	5.3 Symbolic Finite Protocols

	6 Related Work
	Acknowledgments
	References
	A Additional Material for Section 4
	B Additional Material for Section 5

